利用拉普拉斯变换计算安德拉德模型中的松弛模量

Juan Luis González-Santander, Giorgio Spada, Francesco Mainardi, Alexander Apelblat
{"title":"利用拉普拉斯变换计算安德拉德模型中的松弛模量","authors":"Juan Luis González-Santander, Giorgio Spada, Francesco Mainardi, Alexander Apelblat","doi":"10.3390/fractalfract8080439","DOIUrl":null,"url":null,"abstract":"In the framework of the theory of linear viscoelasticity, we derive an analytical expression of the relaxation modulus in the Andrade model Gαt for the case of rational parameter α=m/n∈(0,1) in terms of Mittag–Leffler functions from its Laplace transform G˜αs. It turns out that the expression obtained can be rewritten in terms of Rabotnov functions. Moreover, for the original parameter α=1/3 in the Andrade model, we obtain an expression in terms of Miller-Ross functions. The asymptotic behaviours of Gαt for t→0+ and t→+∞ are also derived applying the Tauberian theorem. The analytical results obtained have been numerically checked by solving the Volterra integral equation satisfied by Gαt by using a successive approximation approach, as well as computing the inverse Laplace transform of G˜αs by using Talbot’s method.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"28 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform\",\"authors\":\"Juan Luis González-Santander, Giorgio Spada, Francesco Mainardi, Alexander Apelblat\",\"doi\":\"10.3390/fractalfract8080439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the framework of the theory of linear viscoelasticity, we derive an analytical expression of the relaxation modulus in the Andrade model Gαt for the case of rational parameter α=m/n∈(0,1) in terms of Mittag–Leffler functions from its Laplace transform G˜αs. It turns out that the expression obtained can be rewritten in terms of Rabotnov functions. Moreover, for the original parameter α=1/3 in the Andrade model, we obtain an expression in terms of Miller-Ross functions. The asymptotic behaviours of Gαt for t→0+ and t→+∞ are also derived applying the Tauberian theorem. The analytical results obtained have been numerically checked by solving the Volterra integral equation satisfied by Gαt by using a successive approximation approach, as well as computing the inverse Laplace transform of G˜αs by using Talbot’s method.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"28 26\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8080439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8080439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线性粘弹性理论的框架内,我们从安德拉德模型 Gαs 的拉普拉斯变换中推导出了有理参数 α=m/n∈(0,1)情况下安德拉德模型 Gαt 中松弛模量的分析表达式,该表达式用 Mittag-Leffler 函数表示。结果发现,所得到的表达式可以用拉博特诺夫函数重写。此外,对于安德拉德模型中的原始参数 α=1/3,我们可以得到米勒-罗斯函数的表达式。我们还应用陶伯定理推导出了 Gαt 在 t→0+ 和 t→+∞ 时的渐近行为。通过使用逐次逼近法求解 Gαt 满足的 Volterra 积分方程,以及使用塔尔博特方法计算 G˜αs 的反拉普拉斯变换,对得到的分析结果进行了数值检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform
In the framework of the theory of linear viscoelasticity, we derive an analytical expression of the relaxation modulus in the Andrade model Gαt for the case of rational parameter α=m/n∈(0,1) in terms of Mittag–Leffler functions from its Laplace transform G˜αs. It turns out that the expression obtained can be rewritten in terms of Rabotnov functions. Moreover, for the original parameter α=1/3 in the Andrade model, we obtain an expression in terms of Miller-Ross functions. The asymptotic behaviours of Gαt for t→0+ and t→+∞ are also derived applying the Tauberian theorem. The analytical results obtained have been numerically checked by solving the Volterra integral equation satisfied by Gαt by using a successive approximation approach, as well as computing the inverse Laplace transform of G˜αs by using Talbot’s method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信