{"title":"四叶草仿生结构的低膨胀超材料技术研究","authors":"Meng Wang, Xin Shen, Yipeng Wu, Beibei Sun","doi":"10.1177/09544054241260470","DOIUrl":null,"url":null,"abstract":"A new metamaterial structure has been developed with ultra-low expansion characteristics, featuring a unidirectional thermal expansion coefficient of less than 1 × 10−7/°C. Metamaterial structure is a new type of composite material designed artificially, by combining material technology with mechanical design technology, to achieve properties that cannot be achieved by conventional materials. Using the metamaterial design method, two materials with a large difference in thermal expansion coefficient are selected to design and realize the negative expansion unit structure. Combining the designed negative expansion structure and the conventional structure with positive expansion, the ultra-low expansion characteristics are finally realized through the mutual compensation of the thermal deformation properties of the two. The ultra-low thermal expansion characteristics of the novel metamaterial structures are verified through material modeling and simulation analysis.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on low-expansion metamaterial technique of four-leaf clover bionic structure\",\"authors\":\"Meng Wang, Xin Shen, Yipeng Wu, Beibei Sun\",\"doi\":\"10.1177/09544054241260470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new metamaterial structure has been developed with ultra-low expansion characteristics, featuring a unidirectional thermal expansion coefficient of less than 1 × 10−7/°C. Metamaterial structure is a new type of composite material designed artificially, by combining material technology with mechanical design technology, to achieve properties that cannot be achieved by conventional materials. Using the metamaterial design method, two materials with a large difference in thermal expansion coefficient are selected to design and realize the negative expansion unit structure. Combining the designed negative expansion structure and the conventional structure with positive expansion, the ultra-low expansion characteristics are finally realized through the mutual compensation of the thermal deformation properties of the two. The ultra-low thermal expansion characteristics of the novel metamaterial structures are verified through material modeling and simulation analysis.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054241260470\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241260470","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Research on low-expansion metamaterial technique of four-leaf clover bionic structure
A new metamaterial structure has been developed with ultra-low expansion characteristics, featuring a unidirectional thermal expansion coefficient of less than 1 × 10−7/°C. Metamaterial structure is a new type of composite material designed artificially, by combining material technology with mechanical design technology, to achieve properties that cannot be achieved by conventional materials. Using the metamaterial design method, two materials with a large difference in thermal expansion coefficient are selected to design and realize the negative expansion unit structure. Combining the designed negative expansion structure and the conventional structure with positive expansion, the ultra-low expansion characteristics are finally realized through the mutual compensation of the thermal deformation properties of the two. The ultra-low thermal expansion characteristics of the novel metamaterial structures are verified through material modeling and simulation analysis.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.