{"title":"多航天器的 \"领航-跟随 \"连接性保持和碰撞规避控制","authors":"Xianghong Xue, Xin Wang, Nannan Han","doi":"10.3390/aerospace11080612","DOIUrl":null,"url":null,"abstract":"This paper investigates the distributed formation control of a group of leader-following spacecraft with bounded actuation and limited communication ranges. In particular, connectivity-preserving and collision-avoidance controllers are proposed for the leader with constant or time-varying velocity, respectively. The communication graph between the spacecraft is modeled via a distance-induced proximity graph. By designing a virtual proxy for each spacecraft, the spacecraft–proxy couplings address the actuator saturation constraints. The inter-proxy dynamics incorporated with a bounded artificial potential function fulfill the coordination of all proxies. In addition, the bounded potential function can simultaneously tackle connectivity preservation and collision avoidance problems. The distributed formation controllers are proposed for multiple spacecraft with constant or time-varying velocities relative to the leader. A sliding mode control approach and the proxies’ dynamics are used in the design of a distributed cooperative controller for spacecraft to address the cooperative problem between the followers and the leader. Numerical simulations confirm the effectiveness of the anti-saturation distributed connectivity preservation controller.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"38 22","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leader-Following Connectivity Preservation and Collision Avoidance Control for Multiple Spacecraft with Bounded Actuation\",\"authors\":\"Xianghong Xue, Xin Wang, Nannan Han\",\"doi\":\"10.3390/aerospace11080612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the distributed formation control of a group of leader-following spacecraft with bounded actuation and limited communication ranges. In particular, connectivity-preserving and collision-avoidance controllers are proposed for the leader with constant or time-varying velocity, respectively. The communication graph between the spacecraft is modeled via a distance-induced proximity graph. By designing a virtual proxy for each spacecraft, the spacecraft–proxy couplings address the actuator saturation constraints. The inter-proxy dynamics incorporated with a bounded artificial potential function fulfill the coordination of all proxies. In addition, the bounded potential function can simultaneously tackle connectivity preservation and collision avoidance problems. The distributed formation controllers are proposed for multiple spacecraft with constant or time-varying velocities relative to the leader. A sliding mode control approach and the proxies’ dynamics are used in the design of a distributed cooperative controller for spacecraft to address the cooperative problem between the followers and the leader. Numerical simulations confirm the effectiveness of the anti-saturation distributed connectivity preservation controller.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"38 22\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11080612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11080612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Leader-Following Connectivity Preservation and Collision Avoidance Control for Multiple Spacecraft with Bounded Actuation
This paper investigates the distributed formation control of a group of leader-following spacecraft with bounded actuation and limited communication ranges. In particular, connectivity-preserving and collision-avoidance controllers are proposed for the leader with constant or time-varying velocity, respectively. The communication graph between the spacecraft is modeled via a distance-induced proximity graph. By designing a virtual proxy for each spacecraft, the spacecraft–proxy couplings address the actuator saturation constraints. The inter-proxy dynamics incorporated with a bounded artificial potential function fulfill the coordination of all proxies. In addition, the bounded potential function can simultaneously tackle connectivity preservation and collision avoidance problems. The distributed formation controllers are proposed for multiple spacecraft with constant or time-varying velocities relative to the leader. A sliding mode control approach and the proxies’ dynamics are used in the design of a distributed cooperative controller for spacecraft to address the cooperative problem between the followers and the leader. Numerical simulations confirm the effectiveness of the anti-saturation distributed connectivity preservation controller.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.