{"title":"气候适应性室内服装对能源使用影响的定量研究","authors":"Zhaokui Zhuang, Zhe Liu, David Chow, Wei Zhao","doi":"10.3390/buildings14082311","DOIUrl":null,"url":null,"abstract":"Clothing adjustment by building occupants is a highly effective and prevalent thermal adaptation behavior aimed at achieving thermal comfort. This paper aims to quantify the impact of climate-responsive indoor clothing adaptation on heating/cooling energy consumption. A climate-responsive indoor temperature control strategy based on rural residents’ indoor clothing adaptation was proposed and integrated into building energy simulations. Indoor clothing insulations were obtained using a predictive model from the author’s prior research. These values were used to calculate indoor setpoint temperatures in terms of the PMV model, which were then input into the building energy simulations. The simulations were conducted using “Ladybug Tools” in Grasshopper. Four simulation scenarios were proposed for winter and summer, respectively, to compare heating/cooling energy use with different indoor clothing strategies (constant and dynamic) and thermal comfort requirements (neutral and 80% acceptable). The results indicated that indoor clothing adaptation significantly reduced indoor setpoint temperatures by 5.0–6.7 °C in winter. In contrast, the impacts on summer indoor setpoint temperatures were not significant. The impacts of indoor clothing adaptation on energy use were evident in both seasons and more pronounced in winter. With a neutral thermal comfort requirement (PMV = 0), total heating and cooling energy use decreased by 35.6% and 20.2%, respectively. The influence was further enhanced with lower indoor thermal comfort requirements. With an 80% acceptable thermal comfort requirement (PMV=±0.85), total heating and cooling energy use decreased by 63.1% and 34.4%, respectively. The climate-responsive indoor temperature control strategy based on indoor clothing adaptation and its impact on heating/cooling energy consumption suggested a viable approach for improving building energy efficiency in China’s rural area and similar cost-sensitive and fuel-poverty contexts.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quantitative Investigation of the Impact of Climate-Responsive Indoor Clothing Adaptation on Energy Use\",\"authors\":\"Zhaokui Zhuang, Zhe Liu, David Chow, Wei Zhao\",\"doi\":\"10.3390/buildings14082311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clothing adjustment by building occupants is a highly effective and prevalent thermal adaptation behavior aimed at achieving thermal comfort. This paper aims to quantify the impact of climate-responsive indoor clothing adaptation on heating/cooling energy consumption. A climate-responsive indoor temperature control strategy based on rural residents’ indoor clothing adaptation was proposed and integrated into building energy simulations. Indoor clothing insulations were obtained using a predictive model from the author’s prior research. These values were used to calculate indoor setpoint temperatures in terms of the PMV model, which were then input into the building energy simulations. The simulations were conducted using “Ladybug Tools” in Grasshopper. Four simulation scenarios were proposed for winter and summer, respectively, to compare heating/cooling energy use with different indoor clothing strategies (constant and dynamic) and thermal comfort requirements (neutral and 80% acceptable). The results indicated that indoor clothing adaptation significantly reduced indoor setpoint temperatures by 5.0–6.7 °C in winter. In contrast, the impacts on summer indoor setpoint temperatures were not significant. The impacts of indoor clothing adaptation on energy use were evident in both seasons and more pronounced in winter. With a neutral thermal comfort requirement (PMV = 0), total heating and cooling energy use decreased by 35.6% and 20.2%, respectively. The influence was further enhanced with lower indoor thermal comfort requirements. With an 80% acceptable thermal comfort requirement (PMV=±0.85), total heating and cooling energy use decreased by 63.1% and 34.4%, respectively. The climate-responsive indoor temperature control strategy based on indoor clothing adaptation and its impact on heating/cooling energy consumption suggested a viable approach for improving building energy efficiency in China’s rural area and similar cost-sensitive and fuel-poverty contexts.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082311\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082311","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
A Quantitative Investigation of the Impact of Climate-Responsive Indoor Clothing Adaptation on Energy Use
Clothing adjustment by building occupants is a highly effective and prevalent thermal adaptation behavior aimed at achieving thermal comfort. This paper aims to quantify the impact of climate-responsive indoor clothing adaptation on heating/cooling energy consumption. A climate-responsive indoor temperature control strategy based on rural residents’ indoor clothing adaptation was proposed and integrated into building energy simulations. Indoor clothing insulations were obtained using a predictive model from the author’s prior research. These values were used to calculate indoor setpoint temperatures in terms of the PMV model, which were then input into the building energy simulations. The simulations were conducted using “Ladybug Tools” in Grasshopper. Four simulation scenarios were proposed for winter and summer, respectively, to compare heating/cooling energy use with different indoor clothing strategies (constant and dynamic) and thermal comfort requirements (neutral and 80% acceptable). The results indicated that indoor clothing adaptation significantly reduced indoor setpoint temperatures by 5.0–6.7 °C in winter. In contrast, the impacts on summer indoor setpoint temperatures were not significant. The impacts of indoor clothing adaptation on energy use were evident in both seasons and more pronounced in winter. With a neutral thermal comfort requirement (PMV = 0), total heating and cooling energy use decreased by 35.6% and 20.2%, respectively. The influence was further enhanced with lower indoor thermal comfort requirements. With an 80% acceptable thermal comfort requirement (PMV=±0.85), total heating and cooling energy use decreased by 63.1% and 34.4%, respectively. The climate-responsive indoor temperature control strategy based on indoor clothing adaptation and its impact on heating/cooling energy consumption suggested a viable approach for improving building energy efficiency in China’s rural area and similar cost-sensitive and fuel-poverty contexts.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates