基于三叉树的期权定价数值方法

Zijun Zhang
{"title":"基于三叉树的期权定价数值方法","authors":"Zijun Zhang","doi":"10.54254/2753-8818/43/20240890","DOIUrl":null,"url":null,"abstract":"This paper investigates the approach to pricing European options, starting with one-step binomial tree pricing (a relatively simple way to calculate option value). In the next step, an additional possible rate of change of stock price is added to make the model more realistic, resulting in the one-step trinomial tree model. The model bounds the option price under the no-arbitrary principle. The paper then analyzes the circumstances under which options have a xed price by completing the market and giving the solution formula of option price through the model. Last, put-call parity is used to prove the rationality of one-step trinomial model so that the model eectively prevents the occurrence of risk-free arbitrage in the market. This helps traders to price options reasonably in the market and maintains the stability of the options market.","PeriodicalId":341023,"journal":{"name":"Theoretical and Natural Science","volume":"39 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical methods base on trinomial trees for option pricing\",\"authors\":\"Zijun Zhang\",\"doi\":\"10.54254/2753-8818/43/20240890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the approach to pricing European options, starting with one-step binomial tree pricing (a relatively simple way to calculate option value). In the next step, an additional possible rate of change of stock price is added to make the model more realistic, resulting in the one-step trinomial tree model. The model bounds the option price under the no-arbitrary principle. The paper then analyzes the circumstances under which options have a xed price by completing the market and giving the solution formula of option price through the model. Last, put-call parity is used to prove the rationality of one-step trinomial model so that the model eectively prevents the occurrence of risk-free arbitrage in the market. This helps traders to price options reasonably in the market and maintains the stability of the options market.\",\"PeriodicalId\":341023,\"journal\":{\"name\":\"Theoretical and Natural Science\",\"volume\":\"39 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54254/2753-8818/43/20240890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2753-8818/43/20240890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了欧式期权的定价方法,从一步二叉树定价(一种相对简单的期权价值计算方 法)开始。在下一步中,为了使模型更加现实,又增加了股票价格的可能变化率,从而形成了一步三叉树模型。该模型在非任意原则下对期权价格进行了约束。然后,本文通过补全市场分析了期权具有固定价格的情况,并通过模型给出了期权价格的求解公式。最后,利用看跌-看涨平价证明了一步三叉模型的合理性,从而有效地防止了市场中无风险套利行为的发生。这有助于交易者在市场上对期权进行合理定价,维护期权市场的稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical methods base on trinomial trees for option pricing
This paper investigates the approach to pricing European options, starting with one-step binomial tree pricing (a relatively simple way to calculate option value). In the next step, an additional possible rate of change of stock price is added to make the model more realistic, resulting in the one-step trinomial tree model. The model bounds the option price under the no-arbitrary principle. The paper then analyzes the circumstances under which options have a xed price by completing the market and giving the solution formula of option price through the model. Last, put-call parity is used to prove the rationality of one-step trinomial model so that the model eectively prevents the occurrence of risk-free arbitrage in the market. This helps traders to price options reasonably in the market and maintains the stability of the options market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信