PyIRoGlass:用于拟合玄武质和安山质玻璃傅立叶变换红外光谱基线的开源贝叶斯 MCMC 算法

Q2 Earth and Planetary Sciences
Sarah Shi, W. Towbin, Terry Plank, Anna Barth, Daniel Rasmussen, Yves Moussallam, Hyun Joo Lee, William Menke
{"title":"PyIRoGlass:用于拟合玄武质和安山质玻璃傅立叶变换红外光谱基线的开源贝叶斯 MCMC 算法","authors":"Sarah Shi, W. Towbin, Terry Plank, Anna Barth, Daniel Rasmussen, Yves Moussallam, Hyun Joo Lee, William Menke","doi":"10.30909/vol.07.02.471501","DOIUrl":null,"url":null,"abstract":"Quantifying volatile concentrations in magmas is critical for understanding magma storage, phase equilibria, and eruption processes. We present PyIRoGlass, an open-source Python package for quantifying concentrations of H2O and CO2 species in the transmission FTIR spectra of basaltic to andesitic glasses. We leverage a dataset of natural melt inclusions and back-arc basin basalts with volatiles below detection to delineate the fundamental shape and variability of the baseline underlying the CO32- and H2Om, 1635 peaks, in the mid-infrared region. All Beer-Lambert Law parameters are examined to quantify associated uncertainties. PyIRoGlass employs Bayesian inference and Markov Chain Monte Carlo sampling to fit all probable baselines and peaks, solving for best-fit parameters and capturing covariance to offer robust uncertainty estimates. Results from PyIRoGlass agree with independent analyses of experimental devolatilized glasses (within 6 %) and interlaboratory standards (10 % for H2O, 6 % for CO2). We determine new molar absorptivities for basalts, εH2Ot,3550 = 63.03 ± 4.47 L/mol · cm and εCO2−3,1515,1430 = 303.44 ± 9.20 L/mol · cm; we additionally update the composition-dependent parameterizations of molar absorptivities, with their uncertainties, for all H2O and CO2 species peaks. The open-source nature of PyIRoGlass ensures its adaptability and evolution as more data become available.","PeriodicalId":33053,"journal":{"name":"Volcanica","volume":"52 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PyIRoGlass: An open-source, Bayesian MCMC algorithm for fitting baselines to FTIR spectra of basaltic-andesitic glasses\",\"authors\":\"Sarah Shi, W. Towbin, Terry Plank, Anna Barth, Daniel Rasmussen, Yves Moussallam, Hyun Joo Lee, William Menke\",\"doi\":\"10.30909/vol.07.02.471501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantifying volatile concentrations in magmas is critical for understanding magma storage, phase equilibria, and eruption processes. We present PyIRoGlass, an open-source Python package for quantifying concentrations of H2O and CO2 species in the transmission FTIR spectra of basaltic to andesitic glasses. We leverage a dataset of natural melt inclusions and back-arc basin basalts with volatiles below detection to delineate the fundamental shape and variability of the baseline underlying the CO32- and H2Om, 1635 peaks, in the mid-infrared region. All Beer-Lambert Law parameters are examined to quantify associated uncertainties. PyIRoGlass employs Bayesian inference and Markov Chain Monte Carlo sampling to fit all probable baselines and peaks, solving for best-fit parameters and capturing covariance to offer robust uncertainty estimates. Results from PyIRoGlass agree with independent analyses of experimental devolatilized glasses (within 6 %) and interlaboratory standards (10 % for H2O, 6 % for CO2). We determine new molar absorptivities for basalts, εH2Ot,3550 = 63.03 ± 4.47 L/mol · cm and εCO2−3,1515,1430 = 303.44 ± 9.20 L/mol · cm; we additionally update the composition-dependent parameterizations of molar absorptivities, with their uncertainties, for all H2O and CO2 species peaks. The open-source nature of PyIRoGlass ensures its adaptability and evolution as more data become available.\",\"PeriodicalId\":33053,\"journal\":{\"name\":\"Volcanica\",\"volume\":\"52 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volcanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30909/vol.07.02.471501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volcanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30909/vol.07.02.471501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

量化岩浆中的挥发物浓度对于了解岩浆储存、相平衡和喷发过程至关重要。我们介绍了 PyIRoGlass,这是一个开源 Python 软件包,用于量化玄武质到安山质玻璃透射傅立叶变换红外光谱中 H2O 和 CO2 的浓度。我们利用挥发物含量低于检测值的天然熔融包裹体和弧后盆地玄武岩数据集,勾勒出中红外区域 CO32 和 H2Om 1635 峰基线的基本形状和变化情况。对所有比尔-朗伯定律参数进行了检查,以量化相关的不确定性。PyIRoGlass 采用贝叶斯推理和马尔可夫链蒙特卡罗采样来拟合所有可能的基线和峰值,求解最佳拟合参数并捕捉协方差,从而提供稳健的不确定性估计。PyIRoGlass 得出的结果与实验性脱硅玻璃的独立分析结果(6% 以内)和实验室间标准(H2O 为 10%,CO2 为 6%)一致。我们为玄武岩确定了新的摩尔吸收率:εH2Ot,3550 = 63.03 ± 4.47 L/mol - cm 和 εCO2-3,1515,1430 = 303.44 ± 9.20 L/mol - cm;此外,我们还更新了所有 H2O 和 CO2 物种峰的摩尔吸收率参数及其不确定性。PyIRoGlass 的开源性确保了它的适应性,并能随着更多数据的获得而不断发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PyIRoGlass: An open-source, Bayesian MCMC algorithm for fitting baselines to FTIR spectra of basaltic-andesitic glasses
Quantifying volatile concentrations in magmas is critical for understanding magma storage, phase equilibria, and eruption processes. We present PyIRoGlass, an open-source Python package for quantifying concentrations of H2O and CO2 species in the transmission FTIR spectra of basaltic to andesitic glasses. We leverage a dataset of natural melt inclusions and back-arc basin basalts with volatiles below detection to delineate the fundamental shape and variability of the baseline underlying the CO32- and H2Om, 1635 peaks, in the mid-infrared region. All Beer-Lambert Law parameters are examined to quantify associated uncertainties. PyIRoGlass employs Bayesian inference and Markov Chain Monte Carlo sampling to fit all probable baselines and peaks, solving for best-fit parameters and capturing covariance to offer robust uncertainty estimates. Results from PyIRoGlass agree with independent analyses of experimental devolatilized glasses (within 6 %) and interlaboratory standards (10 % for H2O, 6 % for CO2). We determine new molar absorptivities for basalts, εH2Ot,3550 = 63.03 ± 4.47 L/mol · cm and εCO2−3,1515,1430 = 303.44 ± 9.20 L/mol · cm; we additionally update the composition-dependent parameterizations of molar absorptivities, with their uncertainties, for all H2O and CO2 species peaks. The open-source nature of PyIRoGlass ensures its adaptability and evolution as more data become available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Volcanica
Volcanica Earth and Planetary Sciences-Geology
CiteScore
4.40
自引率
0.00%
发文量
21
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信