具有非局部广义黎曼-刘维尔边界条件的卡普托序列分微分方程的解的存在性

M. Manigandan, Saravanan Shanmugam, Mohamed Rhaima, Elango Sekar
{"title":"具有非局部广义黎曼-刘维尔边界条件的卡普托序列分微分方程的解的存在性","authors":"M. Manigandan, Saravanan Shanmugam, Mohamed Rhaima, Elango Sekar","doi":"10.3390/fractalfract8080441","DOIUrl":null,"url":null,"abstract":"In this study, we explore the existence and uniqueness of solutions for a boundary value problem defined by coupled sequential fractional differential inclusions. This investigation is augmented by the introduction of a novel set of generalized Riemann–Liouville boundary conditions. Utilizing Carathéodory functions and Lipschitz mappings, we establish existence results for these nonlocal boundary conditions. Utilizing fixed-point theorems designed for multi-valued maps, we obtain significant existence results for the problem, considering both convex and non-convex values. The derived results are clearly demonstrated with an illustrative example. Numerical examples are provided to validate the theoretical conclusions, contributing to a deeper understanding of fractional-order boundary value problems.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions\",\"authors\":\"M. Manigandan, Saravanan Shanmugam, Mohamed Rhaima, Elango Sekar\",\"doi\":\"10.3390/fractalfract8080441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we explore the existence and uniqueness of solutions for a boundary value problem defined by coupled sequential fractional differential inclusions. This investigation is augmented by the introduction of a novel set of generalized Riemann–Liouville boundary conditions. Utilizing Carathéodory functions and Lipschitz mappings, we establish existence results for these nonlocal boundary conditions. Utilizing fixed-point theorems designed for multi-valued maps, we obtain significant existence results for the problem, considering both convex and non-convex values. The derived results are clearly demonstrated with an illustrative example. Numerical examples are provided to validate the theoretical conclusions, contributing to a deeper understanding of fractional-order boundary value problems.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8080441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8080441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们探讨了由耦合序列分数微分夹杂定义的边界值问题的解的存在性和唯一性。通过引入一组新颖的广义黎曼-刘维尔边界条件,这一研究得到了加强。利用 Carathéodory 函数和 Lipschitz 映射,我们建立了这些非局部边界条件的存在性结果。利用专为多值映射设计的定点定理,考虑到凸值和非凸值,我们获得了问题的重要存在性结果。我们通过一个示例清楚地演示了得出的结果。我们还提供了数值示例来验证理论结论,有助于加深对分数阶边界值问题的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions
In this study, we explore the existence and uniqueness of solutions for a boundary value problem defined by coupled sequential fractional differential inclusions. This investigation is augmented by the introduction of a novel set of generalized Riemann–Liouville boundary conditions. Utilizing Carathéodory functions and Lipschitz mappings, we establish existence results for these nonlocal boundary conditions. Utilizing fixed-point theorems designed for multi-valued maps, we obtain significant existence results for the problem, considering both convex and non-convex values. The derived results are clearly demonstrated with an illustrative example. Numerical examples are provided to validate the theoretical conclusions, contributing to a deeper understanding of fractional-order boundary value problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信