M. Manigandan, Saravanan Shanmugam, Mohamed Rhaima, Elango Sekar
{"title":"具有非局部广义黎曼-刘维尔边界条件的卡普托序列分微分方程的解的存在性","authors":"M. Manigandan, Saravanan Shanmugam, Mohamed Rhaima, Elango Sekar","doi":"10.3390/fractalfract8080441","DOIUrl":null,"url":null,"abstract":"In this study, we explore the existence and uniqueness of solutions for a boundary value problem defined by coupled sequential fractional differential inclusions. This investigation is augmented by the introduction of a novel set of generalized Riemann–Liouville boundary conditions. Utilizing Carathéodory functions and Lipschitz mappings, we establish existence results for these nonlocal boundary conditions. Utilizing fixed-point theorems designed for multi-valued maps, we obtain significant existence results for the problem, considering both convex and non-convex values. The derived results are clearly demonstrated with an illustrative example. Numerical examples are provided to validate the theoretical conclusions, contributing to a deeper understanding of fractional-order boundary value problems.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions\",\"authors\":\"M. Manigandan, Saravanan Shanmugam, Mohamed Rhaima, Elango Sekar\",\"doi\":\"10.3390/fractalfract8080441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we explore the existence and uniqueness of solutions for a boundary value problem defined by coupled sequential fractional differential inclusions. This investigation is augmented by the introduction of a novel set of generalized Riemann–Liouville boundary conditions. Utilizing Carathéodory functions and Lipschitz mappings, we establish existence results for these nonlocal boundary conditions. Utilizing fixed-point theorems designed for multi-valued maps, we obtain significant existence results for the problem, considering both convex and non-convex values. The derived results are clearly demonstrated with an illustrative example. Numerical examples are provided to validate the theoretical conclusions, contributing to a deeper understanding of fractional-order boundary value problems.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8080441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8080441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions
In this study, we explore the existence and uniqueness of solutions for a boundary value problem defined by coupled sequential fractional differential inclusions. This investigation is augmented by the introduction of a novel set of generalized Riemann–Liouville boundary conditions. Utilizing Carathéodory functions and Lipschitz mappings, we establish existence results for these nonlocal boundary conditions. Utilizing fixed-point theorems designed for multi-valued maps, we obtain significant existence results for the problem, considering both convex and non-convex values. The derived results are clearly demonstrated with an illustrative example. Numerical examples are provided to validate the theoretical conclusions, contributing to a deeper understanding of fractional-order boundary value problems.