核酸功能的光化学调控策略及其生物医学应用

Menglu Hu, Yihui Wang, Xiaoming Zhou
{"title":"核酸功能的光化学调控策略及其生物医学应用","authors":"Menglu Hu,&nbsp;Yihui Wang,&nbsp;Xiaoming Zhou","doi":"10.1002/INMD.20240006","DOIUrl":null,"url":null,"abstract":"<p>Nucleic acids are not only essential biomolecules that drive critical life processes such as growth, development, reproduction, inheritance, and mutation, but also serve as significant markers for disease diagnosis, pathogen identification, and cancer screening. Nevertheless, several challenges have hindered the widespread use of nucleic acids in biomedicine, such as susceptibility to degradation, limited cellular uptake efficiency, potential toxicity, and uncontrollable activity. Photo-regulation offers an effective solution to address these challenges. It allows for the precise control of nucleic acid structure and function and enhances the stability and safety of their application in biomedicine. In this review, we systematically review the structural characteristics of the three primary photosensitive groups commonly used in the regulation of nucleic acid molecules (i.e., photocleavable molecules, photoisomerization molecules, and photo-crosslinking molecules) under light irradiation. Subsequently, recent research advances in the development and application of photo-modulation strategies based on these photosensitive molecules in antisense oligonucleotides, RNA interference, nucleic acid amplification, and CRISPR/Cas systems are outlined. Finally, we discuss the challenges faced in the widespread application of these photo-regulatory strategies and outline potential future directions for their development.</p>","PeriodicalId":100686,"journal":{"name":"Interdisciplinary Medicine","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/INMD.20240006","citationCount":"0","resultStr":"{\"title\":\"Photochemical regulatory strategies for nucleic acid function and their biomedical applications\",\"authors\":\"Menglu Hu,&nbsp;Yihui Wang,&nbsp;Xiaoming Zhou\",\"doi\":\"10.1002/INMD.20240006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nucleic acids are not only essential biomolecules that drive critical life processes such as growth, development, reproduction, inheritance, and mutation, but also serve as significant markers for disease diagnosis, pathogen identification, and cancer screening. Nevertheless, several challenges have hindered the widespread use of nucleic acids in biomedicine, such as susceptibility to degradation, limited cellular uptake efficiency, potential toxicity, and uncontrollable activity. Photo-regulation offers an effective solution to address these challenges. It allows for the precise control of nucleic acid structure and function and enhances the stability and safety of their application in biomedicine. In this review, we systematically review the structural characteristics of the three primary photosensitive groups commonly used in the regulation of nucleic acid molecules (i.e., photocleavable molecules, photoisomerization molecules, and photo-crosslinking molecules) under light irradiation. Subsequently, recent research advances in the development and application of photo-modulation strategies based on these photosensitive molecules in antisense oligonucleotides, RNA interference, nucleic acid amplification, and CRISPR/Cas systems are outlined. Finally, we discuss the challenges faced in the widespread application of these photo-regulatory strategies and outline potential future directions for their development.</p>\",\"PeriodicalId\":100686,\"journal\":{\"name\":\"Interdisciplinary Medicine\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/INMD.20240006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/INMD.20240006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Medicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/INMD.20240006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

核酸不仅是驱动生长、发育、繁殖、遗传和突变等关键生命过程的重要生物分子,还是疾病诊断、病原体鉴定和癌症筛查的重要标记。然而,核酸在生物医学中的广泛应用面临着一些挑战,如易降解、细胞吸收效率有限、潜在毒性和活性不可控等。光调节为解决这些难题提供了有效的解决方案。它可以精确控制核酸的结构和功能,提高核酸在生物医学应用中的稳定性和安全性。在这篇综述中,我们系统回顾了在光照下调控核酸分子常用的三种主要光敏基团(即光可裂解分子、光异构化分子和光交联分子)的结构特征。随后,概述了基于这些光敏分子的光调节策略在反义寡核苷酸、RNA 干扰、核酸扩增和 CRISPR/Cas 系统中的开发和应用的最新研究进展。最后,我们讨论了广泛应用这些光调节策略所面临的挑战,并概述了其未来潜在的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photochemical regulatory strategies for nucleic acid function and their biomedical applications

Photochemical regulatory strategies for nucleic acid function and their biomedical applications

Nucleic acids are not only essential biomolecules that drive critical life processes such as growth, development, reproduction, inheritance, and mutation, but also serve as significant markers for disease diagnosis, pathogen identification, and cancer screening. Nevertheless, several challenges have hindered the widespread use of nucleic acids in biomedicine, such as susceptibility to degradation, limited cellular uptake efficiency, potential toxicity, and uncontrollable activity. Photo-regulation offers an effective solution to address these challenges. It allows for the precise control of nucleic acid structure and function and enhances the stability and safety of their application in biomedicine. In this review, we systematically review the structural characteristics of the three primary photosensitive groups commonly used in the regulation of nucleic acid molecules (i.e., photocleavable molecules, photoisomerization molecules, and photo-crosslinking molecules) under light irradiation. Subsequently, recent research advances in the development and application of photo-modulation strategies based on these photosensitive molecules in antisense oligonucleotides, RNA interference, nucleic acid amplification, and CRISPR/Cas systems are outlined. Finally, we discuss the challenges faced in the widespread application of these photo-regulatory strategies and outline potential future directions for their development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信