赫兹空间中某些亚线性算子的强估计和弱估计,其指数超过临界指数时的幂权

IF 0.8 Q2 MATHEMATICS
Katsuo Matsuoka
{"title":"赫兹空间中某些亚线性算子的强估计和弱估计,其指数超过临界指数时的幂权","authors":"Katsuo Matsuoka","doi":"10.1007/s43036-024-00368-z","DOIUrl":null,"url":null,"abstract":"<div><p>In 1996, X. Li and D. Yang found the best possible range of index <span>\\(\\alpha \\)</span> for the boundedness of some sublinear operators on Herz spaces <span>\\({\\dot{K}}_q^{\\alpha , p}({{\\mathbb {R}}}^n)\\)</span> or <span>\\(K_q^{\\alpha , p}({{\\mathbb {R}}}^n)\\)</span>, under a certain size condition. Also, in 1994 and 1995, S. Lu and F. Soria showed that concerning the boundedness of above sublinear operator <i>T</i> on <span>\\({\\dot{K}}_q^{\\alpha , p}({{\\mathbb {R}}}^n)\\)</span> or <span>\\(K_q^{\\alpha , p}({{\\mathbb {R}}}^n)\\)</span> with critical index of <span>\\(\\alpha \\)</span>, <i>T</i> is bounded on the power-weighted Herz spaces <span>\\({\\dot{K}}_q^{\\alpha , p}(w)({{\\mathbb {R}}}^n)\\)</span> or <span>\\(K_q^{\\alpha , p}(w)({{\\mathbb {R}}}^n)\\)</span>. In this paper, we will prove that for the two-power-weighted Herz spaces <span>\\({\\dot{K}}_{q_1}^{\\alpha , p}(w_1,w_2)({{\\mathbb {R}}}^n)\\)</span> or <span>\\(K_{q_2}^{\\alpha , p}(w_1,w_2)({{\\mathbb {R}}}^n)\\)</span> with indices beyond critical index of <span>\\(\\alpha \\)</span>, the above <i>T</i> is bounded on them. Further, we will extend this result to a sublinear operator satisfying another size condition and a pair of Herz spaces <span>\\(K_q^{\\alpha , p}(w_{\\beta _1},w_{\\beta _2})({{\\mathbb {R}}}^n)\\)</span> and <span>\\(K_q^{\\alpha , p}(w_{\\gamma _1},w_{\\gamma _2})({{\\mathbb {R}}}^n)\\)</span>. Moreover, we will also show the result of weak version of the above boundedness.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong and weak estimates for some sublinear operators in Herz spaces with power weights at indices beyond critical index\",\"authors\":\"Katsuo Matsuoka\",\"doi\":\"10.1007/s43036-024-00368-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1996, X. Li and D. Yang found the best possible range of index <span>\\\\(\\\\alpha \\\\)</span> for the boundedness of some sublinear operators on Herz spaces <span>\\\\({\\\\dot{K}}_q^{\\\\alpha , p}({{\\\\mathbb {R}}}^n)\\\\)</span> or <span>\\\\(K_q^{\\\\alpha , p}({{\\\\mathbb {R}}}^n)\\\\)</span>, under a certain size condition. Also, in 1994 and 1995, S. Lu and F. Soria showed that concerning the boundedness of above sublinear operator <i>T</i> on <span>\\\\({\\\\dot{K}}_q^{\\\\alpha , p}({{\\\\mathbb {R}}}^n)\\\\)</span> or <span>\\\\(K_q^{\\\\alpha , p}({{\\\\mathbb {R}}}^n)\\\\)</span> with critical index of <span>\\\\(\\\\alpha \\\\)</span>, <i>T</i> is bounded on the power-weighted Herz spaces <span>\\\\({\\\\dot{K}}_q^{\\\\alpha , p}(w)({{\\\\mathbb {R}}}^n)\\\\)</span> or <span>\\\\(K_q^{\\\\alpha , p}(w)({{\\\\mathbb {R}}}^n)\\\\)</span>. In this paper, we will prove that for the two-power-weighted Herz spaces <span>\\\\({\\\\dot{K}}_{q_1}^{\\\\alpha , p}(w_1,w_2)({{\\\\mathbb {R}}}^n)\\\\)</span> or <span>\\\\(K_{q_2}^{\\\\alpha , p}(w_1,w_2)({{\\\\mathbb {R}}}^n)\\\\)</span> with indices beyond critical index of <span>\\\\(\\\\alpha \\\\)</span>, the above <i>T</i> is bounded on them. Further, we will extend this result to a sublinear operator satisfying another size condition and a pair of Herz spaces <span>\\\\(K_q^{\\\\alpha , p}(w_{\\\\beta _1},w_{\\\\beta _2})({{\\\\mathbb {R}}}^n)\\\\)</span> and <span>\\\\(K_q^{\\\\alpha , p}(w_{\\\\gamma _1},w_{\\\\gamma _2})({{\\\\mathbb {R}}}^n)\\\\)</span>. Moreover, we will also show the result of weak version of the above boundedness.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00368-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00368-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

1996 年,X. Li 和 D. Yang 发现了在一定大小条件下,赫兹空间上一些子线性算子的有界性的最佳索引范围 \(\dot{K}}_q^{\alpha , p}({{\mathbb {R}}}^n)\) 或 \(K_q^{\alpha , p}({{\mathbb {R}}}^n)\) 。此外,在 1994 年和 1995 年,S. Lu 和 F. Soria 还证明了关于有界函数Soria 证明了关于上述子线性算子 T 在 \({\dot{K}}_q^{\alpha , p}({{\mathbb {R}}}^n)\) 或 \(K_q^{\alpha 、p}({{\mathbb {R}}}^n)\) 的临界索引为 \(\alpha \),T 在幂加权赫兹空间 \({\dot{K}}_q^{\alpha , p}(w)({{\mathbb {R}}}^n)\) 或 \(K_q^{\alpha , p}(w)({{\mathbb {R}}}^n)\) 上是有界的。在本文中,我们将证明对于双幂加权赫兹空间 \({\dot{K}}_{q_1}^{\alpha , p}(w_1,w_2)({{\mathbb {R}}^n)\) 或 \(K_{q_2}^{\alpha 、p}(w_1,w_2)({{\mathbb {R}}^n)\) 的指数超出了 \(\alpha \) 的临界指数,上述 T 在它们身上是有界的。此外,我们将把这一结果扩展到满足另一个大小条件的子线性算子和一对赫兹空间 \(K_q^{\alpha 、p}(w_{\beta _1},w_{\beta _2})({{\mathbb {R}}}^n)\) 和 \(K_q^{\alpha , p}(w_{\gamma _1},w_{\gamma _2})({{\mathbb {R}}}^n)\).此外,我们还将展示上述有界性的弱版本结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong and weak estimates for some sublinear operators in Herz spaces with power weights at indices beyond critical index

In 1996, X. Li and D. Yang found the best possible range of index \(\alpha \) for the boundedness of some sublinear operators on Herz spaces \({\dot{K}}_q^{\alpha , p}({{\mathbb {R}}}^n)\) or \(K_q^{\alpha , p}({{\mathbb {R}}}^n)\), under a certain size condition. Also, in 1994 and 1995, S. Lu and F. Soria showed that concerning the boundedness of above sublinear operator T on \({\dot{K}}_q^{\alpha , p}({{\mathbb {R}}}^n)\) or \(K_q^{\alpha , p}({{\mathbb {R}}}^n)\) with critical index of \(\alpha \), T is bounded on the power-weighted Herz spaces \({\dot{K}}_q^{\alpha , p}(w)({{\mathbb {R}}}^n)\) or \(K_q^{\alpha , p}(w)({{\mathbb {R}}}^n)\). In this paper, we will prove that for the two-power-weighted Herz spaces \({\dot{K}}_{q_1}^{\alpha , p}(w_1,w_2)({{\mathbb {R}}}^n)\) or \(K_{q_2}^{\alpha , p}(w_1,w_2)({{\mathbb {R}}}^n)\) with indices beyond critical index of \(\alpha \), the above T is bounded on them. Further, we will extend this result to a sublinear operator satisfying another size condition and a pair of Herz spaces \(K_q^{\alpha , p}(w_{\beta _1},w_{\beta _2})({{\mathbb {R}}}^n)\) and \(K_q^{\alpha , p}(w_{\gamma _1},w_{\gamma _2})({{\mathbb {R}}}^n)\). Moreover, we will also show the result of weak version of the above boundedness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信