基于速度模型的优化网格传输

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Geophysics Pub Date : 2024-07-27 DOI:10.1190/geo2023-0581.1
Thiago Dias dos Santos, Alexandre Olender, Daiane I. Dolci, Bruno Souza Carmo
{"title":"基于速度模型的优化网格传输","authors":"Thiago Dias dos Santos, Alexandre Olender, Daiane I. Dolci, Bruno Souza Carmo","doi":"10.1190/geo2023-0581.1","DOIUrl":null,"url":null,"abstract":"In geophysical numerical models using the finite-element method or its variant, the spectral-element method, to solve seismic wave equations, a mesh is employed to discretize the domain. Generating or adapting a mesh to complex geological properties is a challenging task. To tackle this challenge, we develop an r-adaptivity method to generate or adapt a two-dimensional mesh to a seismic velocity field. Our scheme relies on the optimal transport theory to perform vertices relocation, which generates good-shaped meshes and prevents tangled elements. The mesh adaptation can delineate different regions of interest, like sharp interfaces, salt bodies, and discontinuities. The algorithm has a few user-defined parameters that control the mesh density. With typical seismic velocity examples (e.g., Camembert, SEAM Phase, Marmousi-2), mesh adaptation capability is illustrated within meshes with triangular and quadrilateral elements, commonly employed in seismic codes. Besides its potential use in mesh generation, the method developed can be embedded in seismic inversion workflows like multiscale full waveform inversion to adapt the mesh to the field being inverted without incurring the I/O cost of re-meshing and load rebalancing in parallel computations. The method can be extended to three-dimensional meshes.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Velocity model-based adapted meshes using optimal transport\",\"authors\":\"Thiago Dias dos Santos, Alexandre Olender, Daiane I. Dolci, Bruno Souza Carmo\",\"doi\":\"10.1190/geo2023-0581.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In geophysical numerical models using the finite-element method or its variant, the spectral-element method, to solve seismic wave equations, a mesh is employed to discretize the domain. Generating or adapting a mesh to complex geological properties is a challenging task. To tackle this challenge, we develop an r-adaptivity method to generate or adapt a two-dimensional mesh to a seismic velocity field. Our scheme relies on the optimal transport theory to perform vertices relocation, which generates good-shaped meshes and prevents tangled elements. The mesh adaptation can delineate different regions of interest, like sharp interfaces, salt bodies, and discontinuities. The algorithm has a few user-defined parameters that control the mesh density. With typical seismic velocity examples (e.g., Camembert, SEAM Phase, Marmousi-2), mesh adaptation capability is illustrated within meshes with triangular and quadrilateral elements, commonly employed in seismic codes. Besides its potential use in mesh generation, the method developed can be embedded in seismic inversion workflows like multiscale full waveform inversion to adapt the mesh to the field being inverted without incurring the I/O cost of re-meshing and load rebalancing in parallel computations. The method can be extended to three-dimensional meshes.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2023-0581.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2023-0581.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在使用有限元法或其变体谱元法求解地震波方程的地球物理数值模型中,采用网格来离散域。根据复杂的地质特性生成或调整网格是一项具有挑战性的任务。为了应对这一挑战,我们开发了一种 r-自适应方法,用于生成或调整二维网格以适应地震速度场。我们的方案依靠最优传输理论来执行顶点重定位,从而生成形状良好的网格并防止元素缠结。网格适应可以划分出不同的兴趣区域,如尖锐界面、盐体和不连续性。该算法有几个用户自定义参数,用于控制网格密度。通过典型的地震速度示例(如 Camembert、SEAM Phase、Marmousi-2),说明了地震规范中常用的三角形和四边形网格的网格适应能力。除了可用于网格生成,所开发的方法还可嵌入地震反演工作流程(如多尺度全波形反演),使网格适应正在反演的场,而不会产生并行计算中重新网格化和负载再平衡的输入/输出成本。该方法可扩展至三维网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Velocity model-based adapted meshes using optimal transport
In geophysical numerical models using the finite-element method or its variant, the spectral-element method, to solve seismic wave equations, a mesh is employed to discretize the domain. Generating or adapting a mesh to complex geological properties is a challenging task. To tackle this challenge, we develop an r-adaptivity method to generate or adapt a two-dimensional mesh to a seismic velocity field. Our scheme relies on the optimal transport theory to perform vertices relocation, which generates good-shaped meshes and prevents tangled elements. The mesh adaptation can delineate different regions of interest, like sharp interfaces, salt bodies, and discontinuities. The algorithm has a few user-defined parameters that control the mesh density. With typical seismic velocity examples (e.g., Camembert, SEAM Phase, Marmousi-2), mesh adaptation capability is illustrated within meshes with triangular and quadrilateral elements, commonly employed in seismic codes. Besides its potential use in mesh generation, the method developed can be embedded in seismic inversion workflows like multiscale full waveform inversion to adapt the mesh to the field being inverted without incurring the I/O cost of re-meshing and load rebalancing in parallel computations. The method can be extended to three-dimensional meshes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信