{"title":"催产素受体控制小鼠关于他人恐惧表现的社会信息","authors":"Yumi Saito , Kazutaka Mogi , Takefumi Kikusui","doi":"10.1016/j.psyneuen.2024.107150","DOIUrl":null,"url":null,"abstract":"<div><p>The social functions of oxytocin are diverse, and the specific aspects of information processing involved in emotional contagion remain unclear. We compared some fear-related behaviors among oxytocin receptor knockout mice and oxytocin-receptor-reduced mice with that of wild-type mice. In the observational fear assay, which reflects fear emotional contagion, mice that observed other individuals receiving electric shocks exhibited vicarious freezing. Mice with reduced or knockout oxytocin receptor expression showed reduced vicarious freezing. In the emotional discrimination assay, which reflects the ability to perceive others’ emotional cues, we compared approach and scent-sniffing behaviors toward fear and emotionally neutral individuals. While wild-type mice were able to detect the fear emotion of others, mice with reduced or knocked-out oxytocin receptors showed reduced discrimination ability. In the fear behavior assays, which do not present social cues, we did not find these differences in oxytocin receptor expression in the brain. These findings indicate that oxytocin plays a role in emotional contagion by perceiving the emotions of others.</p></div>","PeriodicalId":20836,"journal":{"name":"Psychoneuroendocrinology","volume":"169 ","pages":"Article 107150"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306453024001951/pdfft?md5=d0c51600fa93fdb3228f6df42c03a53f&pid=1-s2.0-S0306453024001951-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Oxytocin receptor control social information about fear expression of others in mice\",\"authors\":\"Yumi Saito , Kazutaka Mogi , Takefumi Kikusui\",\"doi\":\"10.1016/j.psyneuen.2024.107150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The social functions of oxytocin are diverse, and the specific aspects of information processing involved in emotional contagion remain unclear. We compared some fear-related behaviors among oxytocin receptor knockout mice and oxytocin-receptor-reduced mice with that of wild-type mice. In the observational fear assay, which reflects fear emotional contagion, mice that observed other individuals receiving electric shocks exhibited vicarious freezing. Mice with reduced or knockout oxytocin receptor expression showed reduced vicarious freezing. In the emotional discrimination assay, which reflects the ability to perceive others’ emotional cues, we compared approach and scent-sniffing behaviors toward fear and emotionally neutral individuals. While wild-type mice were able to detect the fear emotion of others, mice with reduced or knocked-out oxytocin receptors showed reduced discrimination ability. In the fear behavior assays, which do not present social cues, we did not find these differences in oxytocin receptor expression in the brain. These findings indicate that oxytocin plays a role in emotional contagion by perceiving the emotions of others.</p></div>\",\"PeriodicalId\":20836,\"journal\":{\"name\":\"Psychoneuroendocrinology\",\"volume\":\"169 \",\"pages\":\"Article 107150\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306453024001951/pdfft?md5=d0c51600fa93fdb3228f6df42c03a53f&pid=1-s2.0-S0306453024001951-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychoneuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306453024001951\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychoneuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306453024001951","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Oxytocin receptor control social information about fear expression of others in mice
The social functions of oxytocin are diverse, and the specific aspects of information processing involved in emotional contagion remain unclear. We compared some fear-related behaviors among oxytocin receptor knockout mice and oxytocin-receptor-reduced mice with that of wild-type mice. In the observational fear assay, which reflects fear emotional contagion, mice that observed other individuals receiving electric shocks exhibited vicarious freezing. Mice with reduced or knockout oxytocin receptor expression showed reduced vicarious freezing. In the emotional discrimination assay, which reflects the ability to perceive others’ emotional cues, we compared approach and scent-sniffing behaviors toward fear and emotionally neutral individuals. While wild-type mice were able to detect the fear emotion of others, mice with reduced or knocked-out oxytocin receptors showed reduced discrimination ability. In the fear behavior assays, which do not present social cues, we did not find these differences in oxytocin receptor expression in the brain. These findings indicate that oxytocin plays a role in emotional contagion by perceiving the emotions of others.
期刊介绍:
Psychoneuroendocrinology publishes papers dealing with the interrelated disciplines of psychology, neurobiology, endocrinology, immunology, neurology, and psychiatry, with an emphasis on multidisciplinary studies aiming at integrating these disciplines in terms of either basic research or clinical implications. One of the main goals is to understand how a variety of psychobiological factors interact in the expression of the stress response as it relates to the development and/or maintenance of neuropsychiatric illnesses.