植物中与不稳定 RNA 相关的增强子很少见

IF 15.8 1区 生物学 Q1 PLANT SCIENCES
Bayley R. McDonald, Colette L. Picard, Ian M. Brabb, Marina I. Savenkova, Robert J. Schmitz, Steven E. Jacobsen, Sascha H. Duttke
{"title":"植物中与不稳定 RNA 相关的增强子很少见","authors":"Bayley R. McDonald, Colette L. Picard, Ian M. Brabb, Marina I. Savenkova, Robert J. Schmitz, Steven E. Jacobsen, Sascha H. Duttke","doi":"10.1038/s41477-024-01741-9","DOIUrl":null,"url":null,"abstract":"Unstable transcripts have emerged as markers of active enhancers in vertebrates and shown to be involved in many cellular processes and medical disorders. However, their prevalence and role in plants is largely unexplored. Here, we comprehensively captured all actively initiating (nascent) transcripts across diverse crops and other plants using capped small (cs)RNA sequencing. We discovered that unstable transcripts are rare in plants, unlike in vertebrates, and when present, often originate from promoters. In addition, many ‘distal’ elements in plants initiate tissue-specific stable transcripts and are likely bona fide promoters of as-yet-unannotated genes or non-coding RNAs, cautioning against using reference genome annotations to infer putative enhancer sites. To investigate enhancer function, we integrated data from self-transcribing active regulatory region (STARR) sequencing. We found that annotated promoters and other regions that initiate stable transcripts, but not those marked by unstable or bidirectional unstable transcripts, showed stronger enhancer activity in this assay. Our findings underscore the blurred line between promoters and enhancers and suggest that cis-regulatory elements can encompass diverse structures and mechanisms in eukaryotes, including humans. Unstable transcripts like enhancer RNAs are common in vertebrates. McDonald et al. show that such unstable transcripts are rare in plants and that promoters can function as potent enhancers, suggesting diverse cis-regulatory mechanisms in eukaryotes.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01741-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancers associated with unstable RNAs are rare in plants\",\"authors\":\"Bayley R. McDonald, Colette L. Picard, Ian M. Brabb, Marina I. Savenkova, Robert J. Schmitz, Steven E. Jacobsen, Sascha H. Duttke\",\"doi\":\"10.1038/s41477-024-01741-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unstable transcripts have emerged as markers of active enhancers in vertebrates and shown to be involved in many cellular processes and medical disorders. However, their prevalence and role in plants is largely unexplored. Here, we comprehensively captured all actively initiating (nascent) transcripts across diverse crops and other plants using capped small (cs)RNA sequencing. We discovered that unstable transcripts are rare in plants, unlike in vertebrates, and when present, often originate from promoters. In addition, many ‘distal’ elements in plants initiate tissue-specific stable transcripts and are likely bona fide promoters of as-yet-unannotated genes or non-coding RNAs, cautioning against using reference genome annotations to infer putative enhancer sites. To investigate enhancer function, we integrated data from self-transcribing active regulatory region (STARR) sequencing. We found that annotated promoters and other regions that initiate stable transcripts, but not those marked by unstable or bidirectional unstable transcripts, showed stronger enhancer activity in this assay. Our findings underscore the blurred line between promoters and enhancers and suggest that cis-regulatory elements can encompass diverse structures and mechanisms in eukaryotes, including humans. Unstable transcripts like enhancer RNAs are common in vertebrates. McDonald et al. show that such unstable transcripts are rare in plants and that promoters can function as potent enhancers, suggesting diverse cis-regulatory mechanisms in eukaryotes.\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41477-024-01741-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41477-024-01741-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01741-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在脊椎动物中,不稳定转录本已成为活性增强子的标记,并被证明与许多细胞过程和医学疾病有关。然而,它们在植物中的普遍性和作用在很大程度上尚未被探索。在这里,我们利用带帽小(cs)RNA 测序技术全面捕获了各种作物和其他植物中所有活跃的启动(新生)转录本。我们发现,与脊椎动物不同,不稳定的转录本在植物中很少见,即使存在,也往往源自启动子。此外,植物中的许多 "远端 "元件能启动组织特异性的稳定转录本,而且很可能是尚未注释的基因或非编码 RNA 的真正启动子,这就提醒我们不要使用参考基因组注释来推断推定的增强子位点。为了研究增强子的功能,我们整合了自转录活性调控区(STARR)测序的数据。我们发现,注释的启动子和其他启动稳定转录本的区域,而那些以不稳定或双向不稳定转录本为标志的区域,在这种检测中表现出更强的增强子活性。我们的发现强调了启动子和增强子之间的模糊界限,并表明真核生物(包括人类)中的顺式调控元件可以包含多种结构和机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancers associated with unstable RNAs are rare in plants

Enhancers associated with unstable RNAs are rare in plants

Enhancers associated with unstable RNAs are rare in plants
Unstable transcripts have emerged as markers of active enhancers in vertebrates and shown to be involved in many cellular processes and medical disorders. However, their prevalence and role in plants is largely unexplored. Here, we comprehensively captured all actively initiating (nascent) transcripts across diverse crops and other plants using capped small (cs)RNA sequencing. We discovered that unstable transcripts are rare in plants, unlike in vertebrates, and when present, often originate from promoters. In addition, many ‘distal’ elements in plants initiate tissue-specific stable transcripts and are likely bona fide promoters of as-yet-unannotated genes or non-coding RNAs, cautioning against using reference genome annotations to infer putative enhancer sites. To investigate enhancer function, we integrated data from self-transcribing active regulatory region (STARR) sequencing. We found that annotated promoters and other regions that initiate stable transcripts, but not those marked by unstable or bidirectional unstable transcripts, showed stronger enhancer activity in this assay. Our findings underscore the blurred line between promoters and enhancers and suggest that cis-regulatory elements can encompass diverse structures and mechanisms in eukaryotes, including humans. Unstable transcripts like enhancer RNAs are common in vertebrates. McDonald et al. show that such unstable transcripts are rare in plants and that promoters can function as potent enhancers, suggesting diverse cis-regulatory mechanisms in eukaryotes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信