Ana Fragoso Fonseca, Rita Coelho, Mafalda Lopes- da-Silva, Luísa Lemos, Michael J Hall, Daniela Oliveira, Ana Sofia Falcão, Sandra Tenreiro, Miguel C Seabra, Pedro Antas
{"title":"用异源诱导多能干细胞模拟脉络膜血症。","authors":"Ana Fragoso Fonseca, Rita Coelho, Mafalda Lopes- da-Silva, Luísa Lemos, Michael J Hall, Daniela Oliveira, Ana Sofia Falcão, Sandra Tenreiro, Miguel C Seabra, Pedro Antas","doi":"10.1089/scd.2024.0105","DOIUrl":null,"url":null,"abstract":"<p><p>Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy causing progressive vision loss due to mutations in the <i>CHM</i> gene, leading to Rab escort protein 1 loss of function. CHM disease is characterized by a progressive degeneration of the choroid, the retinal pigment epithelium (RPE), and the retina. The RPE is a monolayer of polarized cells that supports photoreceptors, providing nutrients, growth factors, and ions, and removes retinal metabolism waste products, having a central role in CHM pathogenesis. Commonly used models such as ARPE-19 cells do not reproduce accurately the nature of RPE cells. Human induced pluripotent stem cells (hiPSCs) can be differentiated into RPE cells (hiPSC-RPE), which mimic key features of native RPE, being more suited to study retinal diseases. Therefore, we took advantage of hiPSCs to generate new human-based CHM models. Two isogenic hiPSC lines were generated through CRISPR/Cas9: a CHM knock-out line from a healthy donor and a corrected CHM patient line using a knock-in approach. The differentiated hiPSC-RPE lines exhibited critical morphological and physiological characteristics of native RPE, including the presence of the tight junction markers Claudin-19 and Zonula Occludens-1, phagocytosis of photoreceptor outer segments, pigmentation, a postmitotic state, and the characteristic polygonal shape. In addition, all the studied cells were able to form retinal organoids. This work resulted in the establishment of isogenic hiPSC lines, representing a new and important CHM cellular model. To our knowledge, this is the first time that isogenic cell lines have been developed to model CHM disease, providing a valuable tool for studying the mechanisms at the onset of RPE degeneration.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Choroideremia Disease with Isogenic Induced Pluripotent Stem Cells.\",\"authors\":\"Ana Fragoso Fonseca, Rita Coelho, Mafalda Lopes- da-Silva, Luísa Lemos, Michael J Hall, Daniela Oliveira, Ana Sofia Falcão, Sandra Tenreiro, Miguel C Seabra, Pedro Antas\",\"doi\":\"10.1089/scd.2024.0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy causing progressive vision loss due to mutations in the <i>CHM</i> gene, leading to Rab escort protein 1 loss of function. CHM disease is characterized by a progressive degeneration of the choroid, the retinal pigment epithelium (RPE), and the retina. The RPE is a monolayer of polarized cells that supports photoreceptors, providing nutrients, growth factors, and ions, and removes retinal metabolism waste products, having a central role in CHM pathogenesis. Commonly used models such as ARPE-19 cells do not reproduce accurately the nature of RPE cells. Human induced pluripotent stem cells (hiPSCs) can be differentiated into RPE cells (hiPSC-RPE), which mimic key features of native RPE, being more suited to study retinal diseases. Therefore, we took advantage of hiPSCs to generate new human-based CHM models. Two isogenic hiPSC lines were generated through CRISPR/Cas9: a CHM knock-out line from a healthy donor and a corrected CHM patient line using a knock-in approach. The differentiated hiPSC-RPE lines exhibited critical morphological and physiological characteristics of native RPE, including the presence of the tight junction markers Claudin-19 and Zonula Occludens-1, phagocytosis of photoreceptor outer segments, pigmentation, a postmitotic state, and the characteristic polygonal shape. In addition, all the studied cells were able to form retinal organoids. This work resulted in the establishment of isogenic hiPSC lines, representing a new and important CHM cellular model. To our knowledge, this is the first time that isogenic cell lines have been developed to model CHM disease, providing a valuable tool for studying the mechanisms at the onset of RPE degeneration.</p>\",\"PeriodicalId\":94214,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2024.0105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/scd.2024.0105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Choroideremia Disease with Isogenic Induced Pluripotent Stem Cells.
Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy causing progressive vision loss due to mutations in the CHM gene, leading to Rab escort protein 1 loss of function. CHM disease is characterized by a progressive degeneration of the choroid, the retinal pigment epithelium (RPE), and the retina. The RPE is a monolayer of polarized cells that supports photoreceptors, providing nutrients, growth factors, and ions, and removes retinal metabolism waste products, having a central role in CHM pathogenesis. Commonly used models such as ARPE-19 cells do not reproduce accurately the nature of RPE cells. Human induced pluripotent stem cells (hiPSCs) can be differentiated into RPE cells (hiPSC-RPE), which mimic key features of native RPE, being more suited to study retinal diseases. Therefore, we took advantage of hiPSCs to generate new human-based CHM models. Two isogenic hiPSC lines were generated through CRISPR/Cas9: a CHM knock-out line from a healthy donor and a corrected CHM patient line using a knock-in approach. The differentiated hiPSC-RPE lines exhibited critical morphological and physiological characteristics of native RPE, including the presence of the tight junction markers Claudin-19 and Zonula Occludens-1, phagocytosis of photoreceptor outer segments, pigmentation, a postmitotic state, and the characteristic polygonal shape. In addition, all the studied cells were able to form retinal organoids. This work resulted in the establishment of isogenic hiPSC lines, representing a new and important CHM cellular model. To our knowledge, this is the first time that isogenic cell lines have been developed to model CHM disease, providing a valuable tool for studying the mechanisms at the onset of RPE degeneration.