{"title":"FGF1.","authors":"Sahar B. Jamal , Dorit Hockman","doi":"10.1016/j.diff.2024.100802","DOIUrl":null,"url":null,"abstract":"<div><p>Fibroblast Growth Factor 1 (Fgf1), also known as acidic FGF (aFGF), is involved in the regulation of various biological processes, ranging from development to disease pathogenesis. It is a single chain polypeptide and is highly expressed in adult brain and kidney tissues. Its expression has been shown to be directed by multiple tissue-specific promoters, which generate transcripts of varying lengths. During development the <em>Fgf1</em> gene is widely expressed, including in the neural tube, heart and lung. Mouse mutants for this gene are normal under standard laboratory conditions. However, when <em>Fgf1</em> mutants are exposed to a high fat diet, an aggressive diabetic phenotype has been reported, along with aberrant adipose tissue expansion. Ongoing research on FGF1 and its signalling pathways holds promise for greater understanding of developmental processes as well as the development of novel therapeutic interventions for diseases including diabetes.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301468124000586/pdfft?md5=b5185e6e036ec7666f2f99ad5a6845f6&pid=1-s2.0-S0301468124000586-main.pdf","citationCount":"0","resultStr":"{\"title\":\"FGF1\",\"authors\":\"Sahar B. Jamal , Dorit Hockman\",\"doi\":\"10.1016/j.diff.2024.100802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fibroblast Growth Factor 1 (Fgf1), also known as acidic FGF (aFGF), is involved in the regulation of various biological processes, ranging from development to disease pathogenesis. It is a single chain polypeptide and is highly expressed in adult brain and kidney tissues. Its expression has been shown to be directed by multiple tissue-specific promoters, which generate transcripts of varying lengths. During development the <em>Fgf1</em> gene is widely expressed, including in the neural tube, heart and lung. Mouse mutants for this gene are normal under standard laboratory conditions. However, when <em>Fgf1</em> mutants are exposed to a high fat diet, an aggressive diabetic phenotype has been reported, along with aberrant adipose tissue expansion. Ongoing research on FGF1 and its signalling pathways holds promise for greater understanding of developmental processes as well as the development of novel therapeutic interventions for diseases including diabetes.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0301468124000586/pdfft?md5=b5185e6e036ec7666f2f99ad5a6845f6&pid=1-s2.0-S0301468124000586-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301468124000586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468124000586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Fibroblast Growth Factor 1 (Fgf1), also known as acidic FGF (aFGF), is involved in the regulation of various biological processes, ranging from development to disease pathogenesis. It is a single chain polypeptide and is highly expressed in adult brain and kidney tissues. Its expression has been shown to be directed by multiple tissue-specific promoters, which generate transcripts of varying lengths. During development the Fgf1 gene is widely expressed, including in the neural tube, heart and lung. Mouse mutants for this gene are normal under standard laboratory conditions. However, when Fgf1 mutants are exposed to a high fat diet, an aggressive diabetic phenotype has been reported, along with aberrant adipose tissue expansion. Ongoing research on FGF1 and its signalling pathways holds promise for greater understanding of developmental processes as well as the development of novel therapeutic interventions for diseases including diabetes.