{"title":"无处不在的极低频电磁场诱发焦虑样行为:机理视角。","authors":"Ehsan Hosseini","doi":"10.1080/15368378.2024.2380305","DOIUrl":null,"url":null,"abstract":"<p><p>Anxiety is an adaptive condition characterized by heightened uneasiness, which in the long term can cause complications such as reducing the quality of life and problems related to the mental and physical health. Concerns have been raised regarding the potential dangers of extremely low frequency electromagnetic fields (ELF-EMF) ranging from 3 to 3000 Hz, which are omnipresent in our daily lives and there have been studies about the anxiogenic effects of these fields. Studies conducted in this specific area has revealed that ELF-EMF can have an impact on various brain regions, such as the hippocampus. In conclusion, studies have shown that ELF-EMF can interfere with hippocampus-prefrontal cortex pathway, inducing anxiety behavior. Also, ELF-EMF may initiate anxiety behavior by generating oxidative stress in hypothalamus and hippocampus. Moreover, ELF-EMF may induce anxiety behavior by reducing hippocampus neuroplasticity and increasing the NMDA2<sub>A</sub> receptor expression in the hippocampus. Furthermore, supplementation with antioxidants could serve as an effective protective measure against the adverse effects of FLF-FMF in relation to anxiety behavior.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"220-235"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ubiquitous extremely low frequency electromagnetic fields induces anxiety-like behavior: mechanistic perspectives.\",\"authors\":\"Ehsan Hosseini\",\"doi\":\"10.1080/15368378.2024.2380305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anxiety is an adaptive condition characterized by heightened uneasiness, which in the long term can cause complications such as reducing the quality of life and problems related to the mental and physical health. Concerns have been raised regarding the potential dangers of extremely low frequency electromagnetic fields (ELF-EMF) ranging from 3 to 3000 Hz, which are omnipresent in our daily lives and there have been studies about the anxiogenic effects of these fields. Studies conducted in this specific area has revealed that ELF-EMF can have an impact on various brain regions, such as the hippocampus. In conclusion, studies have shown that ELF-EMF can interfere with hippocampus-prefrontal cortex pathway, inducing anxiety behavior. Also, ELF-EMF may initiate anxiety behavior by generating oxidative stress in hypothalamus and hippocampus. Moreover, ELF-EMF may induce anxiety behavior by reducing hippocampus neuroplasticity and increasing the NMDA2<sub>A</sub> receptor expression in the hippocampus. Furthermore, supplementation with antioxidants could serve as an effective protective measure against the adverse effects of FLF-FMF in relation to anxiety behavior.</p>\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":\" \",\"pages\":\"220-235\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2024.2380305\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2024.2380305","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Anxiety is an adaptive condition characterized by heightened uneasiness, which in the long term can cause complications such as reducing the quality of life and problems related to the mental and physical health. Concerns have been raised regarding the potential dangers of extremely low frequency electromagnetic fields (ELF-EMF) ranging from 3 to 3000 Hz, which are omnipresent in our daily lives and there have been studies about the anxiogenic effects of these fields. Studies conducted in this specific area has revealed that ELF-EMF can have an impact on various brain regions, such as the hippocampus. In conclusion, studies have shown that ELF-EMF can interfere with hippocampus-prefrontal cortex pathway, inducing anxiety behavior. Also, ELF-EMF may initiate anxiety behavior by generating oxidative stress in hypothalamus and hippocampus. Moreover, ELF-EMF may induce anxiety behavior by reducing hippocampus neuroplasticity and increasing the NMDA2A receptor expression in the hippocampus. Furthermore, supplementation with antioxidants could serve as an effective protective measure against the adverse effects of FLF-FMF in relation to anxiety behavior.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.