Duygu Yaman Gram, Murat Abay, Narin Liman, Muhittin Tekin, Mariusz P Kowalewski, Aykut Gram
{"title":"激活 TLR2/TLR1 对永生化绵羊黄体内皮细胞系体外血管生成的影响。","authors":"Duygu Yaman Gram, Murat Abay, Narin Liman, Muhittin Tekin, Mariusz P Kowalewski, Aykut Gram","doi":"10.1530/REP-23-0368","DOIUrl":null,"url":null,"abstract":"<p><strong>In brief: </strong>Activation of TLR2/TLR1 alters in vitro formation of capillary-like structures and induces inflammatory processes in ovine luteal endothelial (OLENDO) cells.</p><p><strong>Abstract: </strong>Postpartum bacterial infections of the uterus affect uterine physiology and ovarian activity, causing fertility problems. The outer membrane component of Gram-negative bacteria, lipopolysaccharide, is involved in the initiation of the local inflammatory processes, and other bacterial toxins, particularly lipopeptides, have also been shown to be potent cytokine inducers, acting via Toll-like receptor-2 (TLR2). However, the possible adverse effects of TLR2 on ovarian and luteal activities have not yet been investigated in depth. The strong expression of TLR2 in the blood vessels of the corpus luteum led us to hypothesize that TLR2 activation might participate in the disruption of luteal vascular functionality. Therefore, we analyzed the effects of Pam3CSK4 (Pam3CysSerLys4), a synthetic triacylated lipopeptide and TLR2/TLR1 ligand, on the functionality of gap junctional intercellular communication (GJIC), endothelial cell invasion, and in vitro capillary-like network formation in an immortalized ovine luteal endothelial (OLENDO) cell line. Pam3CSK4 treatment of OLENDO cells disrupted in vitro tube formation but had no effect on GJIC or migration of OLENDO cells. Furthermore, Pam3CSK4 induced the expression of NFKB, IL6, and IL8 in OLENDO cells. Additionally, the basal availability of TLRs (TLR1-10) and TLR co-receptors (MYD88, LY96/MD2, and CD14) in OLENDO cells was confirmed by conventional PCR. Finally, the activation of TLR2/TLR1 appears to alter in vitro formation of capillary-like structures and induce inflammatory processes in OLENDO cells.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of the activation of TLR2/TLR1 on in vitro angiogenesis in an immortalized ovine luteal endothelial cell line.\",\"authors\":\"Duygu Yaman Gram, Murat Abay, Narin Liman, Muhittin Tekin, Mariusz P Kowalewski, Aykut Gram\",\"doi\":\"10.1530/REP-23-0368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>In brief: </strong>Activation of TLR2/TLR1 alters in vitro formation of capillary-like structures and induces inflammatory processes in ovine luteal endothelial (OLENDO) cells.</p><p><strong>Abstract: </strong>Postpartum bacterial infections of the uterus affect uterine physiology and ovarian activity, causing fertility problems. The outer membrane component of Gram-negative bacteria, lipopolysaccharide, is involved in the initiation of the local inflammatory processes, and other bacterial toxins, particularly lipopeptides, have also been shown to be potent cytokine inducers, acting via Toll-like receptor-2 (TLR2). However, the possible adverse effects of TLR2 on ovarian and luteal activities have not yet been investigated in depth. The strong expression of TLR2 in the blood vessels of the corpus luteum led us to hypothesize that TLR2 activation might participate in the disruption of luteal vascular functionality. Therefore, we analyzed the effects of Pam3CSK4 (Pam3CysSerLys4), a synthetic triacylated lipopeptide and TLR2/TLR1 ligand, on the functionality of gap junctional intercellular communication (GJIC), endothelial cell invasion, and in vitro capillary-like network formation in an immortalized ovine luteal endothelial (OLENDO) cell line. Pam3CSK4 treatment of OLENDO cells disrupted in vitro tube formation but had no effect on GJIC or migration of OLENDO cells. Furthermore, Pam3CSK4 induced the expression of NFKB, IL6, and IL8 in OLENDO cells. Additionally, the basal availability of TLRs (TLR1-10) and TLR co-receptors (MYD88, LY96/MD2, and CD14) in OLENDO cells was confirmed by conventional PCR. Finally, the activation of TLR2/TLR1 appears to alter in vitro formation of capillary-like structures and induce inflammatory processes in OLENDO cells.</p>\",\"PeriodicalId\":21127,\"journal\":{\"name\":\"Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1530/REP-23-0368\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-23-0368","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
The effects of the activation of TLR2/TLR1 on in vitro angiogenesis in an immortalized ovine luteal endothelial cell line.
In brief: Activation of TLR2/TLR1 alters in vitro formation of capillary-like structures and induces inflammatory processes in ovine luteal endothelial (OLENDO) cells.
Abstract: Postpartum bacterial infections of the uterus affect uterine physiology and ovarian activity, causing fertility problems. The outer membrane component of Gram-negative bacteria, lipopolysaccharide, is involved in the initiation of the local inflammatory processes, and other bacterial toxins, particularly lipopeptides, have also been shown to be potent cytokine inducers, acting via Toll-like receptor-2 (TLR2). However, the possible adverse effects of TLR2 on ovarian and luteal activities have not yet been investigated in depth. The strong expression of TLR2 in the blood vessels of the corpus luteum led us to hypothesize that TLR2 activation might participate in the disruption of luteal vascular functionality. Therefore, we analyzed the effects of Pam3CSK4 (Pam3CysSerLys4), a synthetic triacylated lipopeptide and TLR2/TLR1 ligand, on the functionality of gap junctional intercellular communication (GJIC), endothelial cell invasion, and in vitro capillary-like network formation in an immortalized ovine luteal endothelial (OLENDO) cell line. Pam3CSK4 treatment of OLENDO cells disrupted in vitro tube formation but had no effect on GJIC or migration of OLENDO cells. Furthermore, Pam3CSK4 induced the expression of NFKB, IL6, and IL8 in OLENDO cells. Additionally, the basal availability of TLRs (TLR1-10) and TLR co-receptors (MYD88, LY96/MD2, and CD14) in OLENDO cells was confirmed by conventional PCR. Finally, the activation of TLR2/TLR1 appears to alter in vitro formation of capillary-like structures and induce inflammatory processes in OLENDO cells.
期刊介绍:
Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction.
Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease.
Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.