高危精神状态下的自然语言处理:利用语义动力学和图论加强对思维障碍和精神病特征的评估。

IF 3.6 3区 医学 Q1 PSYCHIATRY
Felipe Argolo, William Henrique de Paula Ramos, Natalia Bezerra Mota, João Medrado Gondim, Ana Caroline Lopes-Rocha, Julio Cesar Andrade, Martinus Theodorus van de Bilt, Leonardo Peroni de Jesus, Andrea Jafet, Guillermo Cecchi, Wagner Farid Gattaz, Cheryl Mary Corcoran, Anderson Ara, Alexandre Andrade Loch
{"title":"高危精神状态下的自然语言处理:利用语义动力学和图论加强对思维障碍和精神病特征的评估。","authors":"Felipe Argolo, William Henrique de Paula Ramos, Natalia Bezerra Mota, João Medrado Gondim, Ana Caroline Lopes-Rocha, Julio Cesar Andrade, Martinus Theodorus van de Bilt, Leonardo Peroni de Jesus, Andrea Jafet, Guillermo Cecchi, Wagner Farid Gattaz, Cheryl Mary Corcoran, Anderson Ara, Alexandre Andrade Loch","doi":"10.47626/1516-4446-2023-3419","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Verbal communication has key information for mental health evaluation. Researchers have linked psychopathology phenomena to some of their counterparts in natural-language-processing (NLP). We study the characterization of subtle impairments presented in early stages of psychosis, developing new analysis techniques and a comprehensive map associating NLP features with the full range of clinical presentation.</p><p><strong>Methods: </strong>We used NLP to assess elicited and free-speech of 60 individuals in at-risk-mental-states (ARMS) and 73 controls, screened from 4,500 quota-sampled Portuguese speaking citizens in Sao Paulo, Brazil. Psychotic symptoms were independently assessed with Structured-Interview-for-Psychosis-Risk-Syndromes (SIPS). Speech features (e.g.sentiments, semantic coherence), including novel ones, were correlated with psychotic traits (Spearman's-ρ) and ARMS status (general linear models and machine-learning ensembles).</p><p><strong>Results: </strong>NLP features were informative inputs for classification, which presented 86% balanced accuracy. The NLP features brought forth (e.g. Semantic laminarity as 'perseveration', Semantic recurrence time as 'circumstantiality', average centrality in word repetition graphs) carried most information and also presented direct correlations with psychotic symptoms. Out of the standard measures, grammatical tagging (e.g. use of adjectives) was the most relevant.</p><p><strong>Conclusion: </strong>Subtle speech impairments can be grasped by sensitive methods and used for ARMS screening. We sketch a blueprint for speech-based evaluation, pairing features to standard thought disorder psychometric items.</p>","PeriodicalId":21244,"journal":{"name":"Revista Brasileira de Psiquiatria","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural language processing in at-risk mental states: enhancing the assessment of thought disorders and psychotic traits with semantic dynamics and graph theory.\",\"authors\":\"Felipe Argolo, William Henrique de Paula Ramos, Natalia Bezerra Mota, João Medrado Gondim, Ana Caroline Lopes-Rocha, Julio Cesar Andrade, Martinus Theodorus van de Bilt, Leonardo Peroni de Jesus, Andrea Jafet, Guillermo Cecchi, Wagner Farid Gattaz, Cheryl Mary Corcoran, Anderson Ara, Alexandre Andrade Loch\",\"doi\":\"10.47626/1516-4446-2023-3419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Verbal communication has key information for mental health evaluation. Researchers have linked psychopathology phenomena to some of their counterparts in natural-language-processing (NLP). We study the characterization of subtle impairments presented in early stages of psychosis, developing new analysis techniques and a comprehensive map associating NLP features with the full range of clinical presentation.</p><p><strong>Methods: </strong>We used NLP to assess elicited and free-speech of 60 individuals in at-risk-mental-states (ARMS) and 73 controls, screened from 4,500 quota-sampled Portuguese speaking citizens in Sao Paulo, Brazil. Psychotic symptoms were independently assessed with Structured-Interview-for-Psychosis-Risk-Syndromes (SIPS). Speech features (e.g.sentiments, semantic coherence), including novel ones, were correlated with psychotic traits (Spearman's-ρ) and ARMS status (general linear models and machine-learning ensembles).</p><p><strong>Results: </strong>NLP features were informative inputs for classification, which presented 86% balanced accuracy. The NLP features brought forth (e.g. Semantic laminarity as 'perseveration', Semantic recurrence time as 'circumstantiality', average centrality in word repetition graphs) carried most information and also presented direct correlations with psychotic symptoms. Out of the standard measures, grammatical tagging (e.g. use of adjectives) was the most relevant.</p><p><strong>Conclusion: </strong>Subtle speech impairments can be grasped by sensitive methods and used for ARMS screening. We sketch a blueprint for speech-based evaluation, pairing features to standard thought disorder psychometric items.</p>\",\"PeriodicalId\":21244,\"journal\":{\"name\":\"Revista Brasileira de Psiquiatria\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Psiquiatria\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.47626/1516-4446-2023-3419\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Psiquiatria","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.47626/1516-4446-2023-3419","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

目的语言交流是心理健康评估的关键信息。研究人员已将精神病理学现象与自然语言处理(NLP)中的一些对应现象联系起来。我们研究了精神病早期阶段出现的细微障碍的特征,开发了新的分析技术,并绘制了一张将自然语言处理特征与临床表现全面联系起来的综合地图:我们使用 NLP 评估了从巴西圣保罗 4500 名葡萄牙语公民中筛选出的 60 名处于精神高危状态(ARMS)的人和 73 名对照者的诱发和自由言语。精神病症状由精神病风险综合征结构式访谈(SIPS)独立评估。语音特征(如情感、语义连贯性),包括新特征,与精神病特征(Spearman's-ρ)和 ARMS 状态(一般线性模型和机器学习组合)相关:NLP 特征是分类的信息输入,其均衡准确率为 86%。所提出的 NLP 特征(如作为 "锲而不舍 "的语义层级性、作为 "周密性 "的语义重复时间、单词重复图中的平均中心性)包含的信息最多,而且与精神病症状直接相关。在标准测量中,语法标记(如形容词的使用)最为相关:结论:细微的言语障碍可以通过灵敏的方法捕捉到,并用于 ARMS 筛查。我们为基于言语的评估勾画了一个蓝图,将特征与标准的思维障碍心理测量项目配对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural language processing in at-risk mental states: enhancing the assessment of thought disorders and psychotic traits with semantic dynamics and graph theory.

Objective: Verbal communication has key information for mental health evaluation. Researchers have linked psychopathology phenomena to some of their counterparts in natural-language-processing (NLP). We study the characterization of subtle impairments presented in early stages of psychosis, developing new analysis techniques and a comprehensive map associating NLP features with the full range of clinical presentation.

Methods: We used NLP to assess elicited and free-speech of 60 individuals in at-risk-mental-states (ARMS) and 73 controls, screened from 4,500 quota-sampled Portuguese speaking citizens in Sao Paulo, Brazil. Psychotic symptoms were independently assessed with Structured-Interview-for-Psychosis-Risk-Syndromes (SIPS). Speech features (e.g.sentiments, semantic coherence), including novel ones, were correlated with psychotic traits (Spearman's-ρ) and ARMS status (general linear models and machine-learning ensembles).

Results: NLP features were informative inputs for classification, which presented 86% balanced accuracy. The NLP features brought forth (e.g. Semantic laminarity as 'perseveration', Semantic recurrence time as 'circumstantiality', average centrality in word repetition graphs) carried most information and also presented direct correlations with psychotic symptoms. Out of the standard measures, grammatical tagging (e.g. use of adjectives) was the most relevant.

Conclusion: Subtle speech impairments can be grasped by sensitive methods and used for ARMS screening. We sketch a blueprint for speech-based evaluation, pairing features to standard thought disorder psychometric items.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Psiquiatria
Revista Brasileira de Psiquiatria 医学-精神病学
CiteScore
6.60
自引率
0.00%
发文量
83
审稿时长
6-12 weeks
期刊介绍: The Revista Brasileira de Psiquiatria (RBP) is the official organ of the Associação Brasileira de Psiquiatria (ABP - Brazilian Association of Psychiatry). The Brazilian Journal of Psychiatry is a bimonthly publication that aims to publish original manuscripts in all areas of psychiatry, including public health, clinical epidemiology, basic science, and mental health problems. The journal is fully open access, and there are no article processing or publication fees. Articles must be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信