{"title":"同义和非同义密码子替换可以减轻折叠对 GroEL 的依赖。","authors":"Tali Haviv Reingewertz, Miki Ben-Maimon, Zohar Zafrir, Tamir Tuller, Amnon Horovitz","doi":"10.1002/pro.5087","DOIUrl":null,"url":null,"abstract":"<p><p>The Escherichia coli GroEL/ES chaperonin system facilitates protein folding in an ATP-driven manner. There are <100 obligate clients of this system in E. coli although GroEL can interact and assist the folding of a multitude of proteins in vitro. It has remained unclear, however, which features distinguish obligate clients from all the other proteins in an E. coli cell. To address this question, we established a system for selecting mutations in mouse dihydrofolate reductase (mDHFR), a GroEL interactor, that diminish its dependence on GroEL for folding. Strikingly, both synonymous and non-synonymous codon substitutions were found to reduce mDHFR's dependence on GroEL. The non-synonymous substitutions increase the rate of spontaneous folding whereas computational analysis indicates that the synonymous substitutions appear to affect translation rates at specific sites.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285870/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synonymous and non-synonymous codon substitutions can alleviate dependence on GroEL for folding.\",\"authors\":\"Tali Haviv Reingewertz, Miki Ben-Maimon, Zohar Zafrir, Tamir Tuller, Amnon Horovitz\",\"doi\":\"10.1002/pro.5087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Escherichia coli GroEL/ES chaperonin system facilitates protein folding in an ATP-driven manner. There are <100 obligate clients of this system in E. coli although GroEL can interact and assist the folding of a multitude of proteins in vitro. It has remained unclear, however, which features distinguish obligate clients from all the other proteins in an E. coli cell. To address this question, we established a system for selecting mutations in mouse dihydrofolate reductase (mDHFR), a GroEL interactor, that diminish its dependence on GroEL for folding. Strikingly, both synonymous and non-synonymous codon substitutions were found to reduce mDHFR's dependence on GroEL. The non-synonymous substitutions increase the rate of spontaneous folding whereas computational analysis indicates that the synonymous substitutions appear to affect translation rates at specific sites.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285870/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.5087\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5087","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synonymous and non-synonymous codon substitutions can alleviate dependence on GroEL for folding.
The Escherichia coli GroEL/ES chaperonin system facilitates protein folding in an ATP-driven manner. There are <100 obligate clients of this system in E. coli although GroEL can interact and assist the folding of a multitude of proteins in vitro. It has remained unclear, however, which features distinguish obligate clients from all the other proteins in an E. coli cell. To address this question, we established a system for selecting mutations in mouse dihydrofolate reductase (mDHFR), a GroEL interactor, that diminish its dependence on GroEL for folding. Strikingly, both synonymous and non-synonymous codon substitutions were found to reduce mDHFR's dependence on GroEL. The non-synonymous substitutions increase the rate of spontaneous folding whereas computational analysis indicates that the synonymous substitutions appear to affect translation rates at specific sites.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).