{"title":"利用多光谱成像技术,整合光谱和纹理信息,建立一个用于早期检测辣椒疫霉病的 CNN 模型。","authors":"Zhijuan Duan, Haoqian Li, Chenguang Li, Jun Zhang, Dongfang Zhang, Xiaofei Fan, Xueping Chen","doi":"10.1186/s13007-024-01239-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pepper Phytophthora blight is a devastating disease during the growth process of peppers, significantly affecting their yield and quality. Accurate, rapid, and non-destructive early detection of pepper Phytophthora blight is of great importance for pepper production management. This study investigated the possibility of using multispectral imaging combined with machine learning to detect Phytophthora blight in peppers. Peppers were divided into two groups: one group was inoculated with Phytophthora blight, and the other was left untreated as a control. Multispectral images were collected at 0-h samples before inoculation and at 48, 60, 72, and 84 h after inoculation. The supporting software of the multispectral imaging system was used to extract spectral features from 19 wavelengths, and textural features were extracted using a gray-level co-occurrence matrix (GLCM) and a local binary pattern (LBP). The principal component analysis (PCA), successive projection algorithm (SPA), and genetic algorithm (GA) were used for feature selection from the extracted spectral and textural features. Two classification models were established based on effective single spectral features and significant spectral textural fusion features: a partial least squares discriminant analysis (PLS_DA) and one-dimensional convolutional neural network (1D-CNN). A two-dimensional convolutional neural network (2D-CNN) was constructed based on five principal component (PC) coefficients extracted from the spectral data using PCA, weighted, and summed with 19-channel multispectral images to create new PC images.</p><p><strong>Results: </strong>The results indicated that the models using PCA for feature selection exhibit relatively stable classification performance. The accuracy of PLS-DA and 1D-CNN based on single spectral features is 82.6% and 83.3%, respectively, at the 48h mark. In contrast, the accuracy of PLS-DA and 1D-CNN based on spectral texture fusion reached 85.9% and 91.3%, respectively, at the same 48h mark. The accuracy of the 2D-CNN based on 5 PC images is 82%.</p><p><strong>Conclusions: </strong>The research indicates that Phytophthora blight infection can be detected 48 h after inoculation (36 h before visible symptoms). This study provides an effective method for the early detection of Phytophthora blight in peppers.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"115"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288097/pdf/","citationCount":"0","resultStr":"{\"title\":\"A CNN model for early detection of pepper Phytophthora blight using multispectral imaging, integrating spectral and textural information.\",\"authors\":\"Zhijuan Duan, Haoqian Li, Chenguang Li, Jun Zhang, Dongfang Zhang, Xiaofei Fan, Xueping Chen\",\"doi\":\"10.1186/s13007-024-01239-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pepper Phytophthora blight is a devastating disease during the growth process of peppers, significantly affecting their yield and quality. Accurate, rapid, and non-destructive early detection of pepper Phytophthora blight is of great importance for pepper production management. This study investigated the possibility of using multispectral imaging combined with machine learning to detect Phytophthora blight in peppers. Peppers were divided into two groups: one group was inoculated with Phytophthora blight, and the other was left untreated as a control. Multispectral images were collected at 0-h samples before inoculation and at 48, 60, 72, and 84 h after inoculation. The supporting software of the multispectral imaging system was used to extract spectral features from 19 wavelengths, and textural features were extracted using a gray-level co-occurrence matrix (GLCM) and a local binary pattern (LBP). The principal component analysis (PCA), successive projection algorithm (SPA), and genetic algorithm (GA) were used for feature selection from the extracted spectral and textural features. Two classification models were established based on effective single spectral features and significant spectral textural fusion features: a partial least squares discriminant analysis (PLS_DA) and one-dimensional convolutional neural network (1D-CNN). A two-dimensional convolutional neural network (2D-CNN) was constructed based on five principal component (PC) coefficients extracted from the spectral data using PCA, weighted, and summed with 19-channel multispectral images to create new PC images.</p><p><strong>Results: </strong>The results indicated that the models using PCA for feature selection exhibit relatively stable classification performance. The accuracy of PLS-DA and 1D-CNN based on single spectral features is 82.6% and 83.3%, respectively, at the 48h mark. In contrast, the accuracy of PLS-DA and 1D-CNN based on spectral texture fusion reached 85.9% and 91.3%, respectively, at the same 48h mark. The accuracy of the 2D-CNN based on 5 PC images is 82%.</p><p><strong>Conclusions: </strong>The research indicates that Phytophthora blight infection can be detected 48 h after inoculation (36 h before visible symptoms). This study provides an effective method for the early detection of Phytophthora blight in peppers.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"20 1\",\"pages\":\"115\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288097/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01239-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01239-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A CNN model for early detection of pepper Phytophthora blight using multispectral imaging, integrating spectral and textural information.
Background: Pepper Phytophthora blight is a devastating disease during the growth process of peppers, significantly affecting their yield and quality. Accurate, rapid, and non-destructive early detection of pepper Phytophthora blight is of great importance for pepper production management. This study investigated the possibility of using multispectral imaging combined with machine learning to detect Phytophthora blight in peppers. Peppers were divided into two groups: one group was inoculated with Phytophthora blight, and the other was left untreated as a control. Multispectral images were collected at 0-h samples before inoculation and at 48, 60, 72, and 84 h after inoculation. The supporting software of the multispectral imaging system was used to extract spectral features from 19 wavelengths, and textural features were extracted using a gray-level co-occurrence matrix (GLCM) and a local binary pattern (LBP). The principal component analysis (PCA), successive projection algorithm (SPA), and genetic algorithm (GA) were used for feature selection from the extracted spectral and textural features. Two classification models were established based on effective single spectral features and significant spectral textural fusion features: a partial least squares discriminant analysis (PLS_DA) and one-dimensional convolutional neural network (1D-CNN). A two-dimensional convolutional neural network (2D-CNN) was constructed based on five principal component (PC) coefficients extracted from the spectral data using PCA, weighted, and summed with 19-channel multispectral images to create new PC images.
Results: The results indicated that the models using PCA for feature selection exhibit relatively stable classification performance. The accuracy of PLS-DA and 1D-CNN based on single spectral features is 82.6% and 83.3%, respectively, at the 48h mark. In contrast, the accuracy of PLS-DA and 1D-CNN based on spectral texture fusion reached 85.9% and 91.3%, respectively, at the same 48h mark. The accuracy of the 2D-CNN based on 5 PC images is 82%.
Conclusions: The research indicates that Phytophthora blight infection can be detected 48 h after inoculation (36 h before visible symptoms). This study provides an effective method for the early detection of Phytophthora blight in peppers.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.