Gurnish Sidora, Anna L Haley, Nicole M Cancelliere, Vitor M Pereira, David A Steinman
{"title":"回到伯努利:跨静脉压力梯度的简单公式和脑静脉疾病流速的回顾性估算。","authors":"Gurnish Sidora, Anna L Haley, Nicole M Cancelliere, Vitor M Pereira, David A Steinman","doi":"10.1136/jnis-2024-022074","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Venous sinus stenosis can be associated with cerebrovascular disorders. Understanding the role of blood flow disturbances in these disorders is often hampered by the lack of patient-specific flow rates. Our goal was to demonstrate the impact of this by predicting individual flow rates retrospectively from routine manometry and angiography.</p><p><strong>Methods: </strong>Ten cases, spanning a range of stenosis severities and pressure gradients, were selected from a cohort of patients who had undergone venous stenting for pulsatile tinnitus. Lumen geometries were digitally segmented from CT venograms. A simplified Bernoulli formula was derived to estimate individual cycle-average flow rates from clinical pressure gradients and minimum lumen cross-section areas. High-fidelity pulsatile computational fluid dynamics (CFD) simulations were performed to compare predictions of flow disturbances using generic versus individual flow rates, and to validate the Bernoulli formula.</p><p><strong>Results: </strong>Individual flow rates derived from the Bernoulli formula deviated by up to 47% from the assumed generic flow rate, resulting in substantial differences in CFD predictions of post-stenotic flow instabilities. Pressure gradients estimated by the simplified Bernoulli formula were, however, highly predictive of pressure gradients from the full CFD simulations (R<sup>2</sup>=0.95; slope=0.98, 95% CI 0.88 to 1.09).</p><p><strong>Conclusions: </strong>A simple Bernoulli formula can predict CFD-estimated trans-stenotic pressure gradients in realistic venous geometries. As demonstrated here, this may be used to recover individual flow rates from routine-but-invasive clinical measurements; however, it also suggests a simpler path towards non-invasive estimation of trans-stenotic pressure gradients that may avoid some of the challenges associated with 4D flow MRI approaches.</p>","PeriodicalId":16411,"journal":{"name":"Journal of NeuroInterventional Surgery","volume":" ","pages":"1005-1010"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Back to Bernoulli: a simple formula for trans-stenotic pressure gradients and retrospective estimation of flow rates in cerebral venous disease.\",\"authors\":\"Gurnish Sidora, Anna L Haley, Nicole M Cancelliere, Vitor M Pereira, David A Steinman\",\"doi\":\"10.1136/jnis-2024-022074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Venous sinus stenosis can be associated with cerebrovascular disorders. Understanding the role of blood flow disturbances in these disorders is often hampered by the lack of patient-specific flow rates. Our goal was to demonstrate the impact of this by predicting individual flow rates retrospectively from routine manometry and angiography.</p><p><strong>Methods: </strong>Ten cases, spanning a range of stenosis severities and pressure gradients, were selected from a cohort of patients who had undergone venous stenting for pulsatile tinnitus. Lumen geometries were digitally segmented from CT venograms. A simplified Bernoulli formula was derived to estimate individual cycle-average flow rates from clinical pressure gradients and minimum lumen cross-section areas. High-fidelity pulsatile computational fluid dynamics (CFD) simulations were performed to compare predictions of flow disturbances using generic versus individual flow rates, and to validate the Bernoulli formula.</p><p><strong>Results: </strong>Individual flow rates derived from the Bernoulli formula deviated by up to 47% from the assumed generic flow rate, resulting in substantial differences in CFD predictions of post-stenotic flow instabilities. Pressure gradients estimated by the simplified Bernoulli formula were, however, highly predictive of pressure gradients from the full CFD simulations (R<sup>2</sup>=0.95; slope=0.98, 95% CI 0.88 to 1.09).</p><p><strong>Conclusions: </strong>A simple Bernoulli formula can predict CFD-estimated trans-stenotic pressure gradients in realistic venous geometries. As demonstrated here, this may be used to recover individual flow rates from routine-but-invasive clinical measurements; however, it also suggests a simpler path towards non-invasive estimation of trans-stenotic pressure gradients that may avoid some of the challenges associated with 4D flow MRI approaches.</p>\",\"PeriodicalId\":16411,\"journal\":{\"name\":\"Journal of NeuroInterventional Surgery\",\"volume\":\" \",\"pages\":\"1005-1010\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroInterventional Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jnis-2024-022074\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroInterventional Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jnis-2024-022074","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Back to Bernoulli: a simple formula for trans-stenotic pressure gradients and retrospective estimation of flow rates in cerebral venous disease.
Background: Venous sinus stenosis can be associated with cerebrovascular disorders. Understanding the role of blood flow disturbances in these disorders is often hampered by the lack of patient-specific flow rates. Our goal was to demonstrate the impact of this by predicting individual flow rates retrospectively from routine manometry and angiography.
Methods: Ten cases, spanning a range of stenosis severities and pressure gradients, were selected from a cohort of patients who had undergone venous stenting for pulsatile tinnitus. Lumen geometries were digitally segmented from CT venograms. A simplified Bernoulli formula was derived to estimate individual cycle-average flow rates from clinical pressure gradients and minimum lumen cross-section areas. High-fidelity pulsatile computational fluid dynamics (CFD) simulations were performed to compare predictions of flow disturbances using generic versus individual flow rates, and to validate the Bernoulli formula.
Results: Individual flow rates derived from the Bernoulli formula deviated by up to 47% from the assumed generic flow rate, resulting in substantial differences in CFD predictions of post-stenotic flow instabilities. Pressure gradients estimated by the simplified Bernoulli formula were, however, highly predictive of pressure gradients from the full CFD simulations (R2=0.95; slope=0.98, 95% CI 0.88 to 1.09).
Conclusions: A simple Bernoulli formula can predict CFD-estimated trans-stenotic pressure gradients in realistic venous geometries. As demonstrated here, this may be used to recover individual flow rates from routine-but-invasive clinical measurements; however, it also suggests a simpler path towards non-invasive estimation of trans-stenotic pressure gradients that may avoid some of the challenges associated with 4D flow MRI approaches.
期刊介绍:
The Journal of NeuroInterventional Surgery (JNIS) is a leading peer review journal for scientific research and literature pertaining to the field of neurointerventional surgery. The journal launch follows growing professional interest in neurointerventional techniques for the treatment of a range of neurological and vascular problems including stroke, aneurysms, brain tumors, and spinal compression.The journal is owned by SNIS and is also the official journal of the Interventional Chapter of the Australian and New Zealand Society of Neuroradiology (ANZSNR), the Canadian Interventional Neuro Group, the Hong Kong Neurological Society (HKNS) and the Neuroradiological Society of Taiwan.