{"title":"COVID-19 跨国趋势:确定国家之间的相关性。","authors":"Jihan Muhaidat, Aiman Albatayneh","doi":"10.1177/03000605241266233","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To enhance the accuracy of forecasting future coronavirus disease 2019 (COVID-19) cases and trends by identifying and analyzing correlations between the daily case counts of different countries reported between January 2020 and January 2023, to uncover significant links in COVID-19 patterns between nations, allowing for real-time, precise predictions of disease spread based on observed trends in correlated countries.</p><p><strong>Methods: </strong>Daily COVID-19 cases for each country were tracked between January 2020 and January 2023 to identify correlations between nations. Current case data were obtained from reliable sources, such as Johns Hopkins University and the World Health Organization. Data were analyzed in Microsoft Excel using Pearson's correlation coefficient to assess the strength of connections.</p><p><strong>Results: </strong>Strong correlations (r > 0.80) were revealed between the daily reported COVID-19 case counts of numerous countries across various continents. Specifically, 62 nations showed significant correlations with at least one correlated (connected) country per nation. These correlations indicate a similarity in COVID-19 trends over the past 3 or more years.</p><p><strong>Conclusion: </strong>This study addresses the gap in country-specific correlations within COVID-19 forecasting methodologies. The proposed method offers essential real-time insights to aid effective government and organizational planning in response to the pandemic.</p>","PeriodicalId":16129,"journal":{"name":"Journal of International Medical Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289804/pdf/","citationCount":"0","resultStr":"{\"title\":\"COVID-19 trends across borders: Identifying correlations among countries.\",\"authors\":\"Jihan Muhaidat, Aiman Albatayneh\",\"doi\":\"10.1177/03000605241266233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To enhance the accuracy of forecasting future coronavirus disease 2019 (COVID-19) cases and trends by identifying and analyzing correlations between the daily case counts of different countries reported between January 2020 and January 2023, to uncover significant links in COVID-19 patterns between nations, allowing for real-time, precise predictions of disease spread based on observed trends in correlated countries.</p><p><strong>Methods: </strong>Daily COVID-19 cases for each country were tracked between January 2020 and January 2023 to identify correlations between nations. Current case data were obtained from reliable sources, such as Johns Hopkins University and the World Health Organization. Data were analyzed in Microsoft Excel using Pearson's correlation coefficient to assess the strength of connections.</p><p><strong>Results: </strong>Strong correlations (r > 0.80) were revealed between the daily reported COVID-19 case counts of numerous countries across various continents. Specifically, 62 nations showed significant correlations with at least one correlated (connected) country per nation. These correlations indicate a similarity in COVID-19 trends over the past 3 or more years.</p><p><strong>Conclusion: </strong>This study addresses the gap in country-specific correlations within COVID-19 forecasting methodologies. The proposed method offers essential real-time insights to aid effective government and organizational planning in response to the pandemic.</p>\",\"PeriodicalId\":16129,\"journal\":{\"name\":\"Journal of International Medical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289804/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of International Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/03000605241266233\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of International Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/03000605241266233","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
COVID-19 trends across borders: Identifying correlations among countries.
Objectives: To enhance the accuracy of forecasting future coronavirus disease 2019 (COVID-19) cases and trends by identifying and analyzing correlations between the daily case counts of different countries reported between January 2020 and January 2023, to uncover significant links in COVID-19 patterns between nations, allowing for real-time, precise predictions of disease spread based on observed trends in correlated countries.
Methods: Daily COVID-19 cases for each country were tracked between January 2020 and January 2023 to identify correlations between nations. Current case data were obtained from reliable sources, such as Johns Hopkins University and the World Health Organization. Data were analyzed in Microsoft Excel using Pearson's correlation coefficient to assess the strength of connections.
Results: Strong correlations (r > 0.80) were revealed between the daily reported COVID-19 case counts of numerous countries across various continents. Specifically, 62 nations showed significant correlations with at least one correlated (connected) country per nation. These correlations indicate a similarity in COVID-19 trends over the past 3 or more years.
Conclusion: This study addresses the gap in country-specific correlations within COVID-19 forecasting methodologies. The proposed method offers essential real-time insights to aid effective government and organizational planning in response to the pandemic.
期刊介绍:
_Journal of International Medical Research_ is a leading international journal for rapid publication of original medical, pre-clinical and clinical research, reviews, preliminary and pilot studies on a page charge basis.
As a service to authors, every article accepted by peer review will be given a full technical edit to make papers as accessible and readable to the international medical community as rapidly as possible.
Once the technical edit queries have been answered to the satisfaction of the journal, the paper will be published and made available freely to everyone under a creative commons licence.
Symposium proceedings, summaries of presentations or collections of medical, pre-clinical or clinical data on a specific topic are welcome for publication as supplements.
Print ISSN: 0300-0605