透皮应用富含二碳酸酯的萜类侵袭体:一种增强抗水肿和抑制痛觉活性的方法。

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sadek Ahmed, Michael M Farag, Mohamed A Sadek, Diana E Aziz
{"title":"透皮应用富含二碳酸酯的萜类侵袭体:一种增强抗水肿和抑制痛觉活性的方法。","authors":"Sadek Ahmed, Michael M Farag, Mohamed A Sadek, Diana E Aziz","doi":"10.1080/08982104.2024.2382974","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to formulate diacerein loaded terpene-enriched invasomes (DCN-TINV) to fulfill a fruitful management of osteoarthritis. A 2<sup>3</sup> factorial design was adopted, including A: cholesterol concentration (%w/v), B: ethanol volume (mL) and C: phosphatidylcholine: drug ratio as the studied factors. Invasomes were constructed using the thin film hydration technique. Herein, percent entrapment efficiency (EE%), particle size (PS), poly-dispersity index (PDI) and zeta potential (ZP) were statistically analyzed using Design-Expert<sup>®</sup> software to select the optimum formula. The selected criteria for detecting the optimum formula were restricting PS (<350 nm), dismissing PDI, magnifying ZP (as absolute value) and EE%. The selected formula was further scrutinized through multiple <i>in-vitro</i> studies, including Fourier-transform infrared spectroscopy, differential scanning calorimetry, pH measurement, stability study, release profile and transmission electron microscopy. Furthermore, the <i>ex-vivo performance was evaluated through ex-vivo</i> skin permeation and deposition. Finally, it was subjected to an array of <i>in-vivo</i> tests, namely Draize test, histopathology, <i>In-vivo skin penetration</i>, edema size, and nociception inhibition measurements. The optimum formula with desirability (0.913) demonstrated EE% (89.21% ± 2.12%), PS (319.75 ± 10.11 nm), ZP (-55 ± 3.96 mV) and a prolonged release profile. Intriguingly, revamped skin permeation (1143 ± 32.11 µg/cm<sup>2</sup>), nociception inhibition (77%) and <i>In-vivo skin penetration</i> (144 µm) compared to DCN suspension (285 ± 21.25 µg/cm<sup>2</sup>, 26% and 48 µm, respectively) were displayed. The optimum DCN-TINV exhibited plausible safety and stability profiles consolidated with auspicious efficacy for better management of osteoarthritis.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transdermal application of diacerin loaded-terpene enriched invasomes: an approach to augment anti-edema and nociception inhibition activity.\",\"authors\":\"Sadek Ahmed, Michael M Farag, Mohamed A Sadek, Diana E Aziz\",\"doi\":\"10.1080/08982104.2024.2382974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to formulate diacerein loaded terpene-enriched invasomes (DCN-TINV) to fulfill a fruitful management of osteoarthritis. A 2<sup>3</sup> factorial design was adopted, including A: cholesterol concentration (%w/v), B: ethanol volume (mL) and C: phosphatidylcholine: drug ratio as the studied factors. Invasomes were constructed using the thin film hydration technique. Herein, percent entrapment efficiency (EE%), particle size (PS), poly-dispersity index (PDI) and zeta potential (ZP) were statistically analyzed using Design-Expert<sup>®</sup> software to select the optimum formula. The selected criteria for detecting the optimum formula were restricting PS (<350 nm), dismissing PDI, magnifying ZP (as absolute value) and EE%. The selected formula was further scrutinized through multiple <i>in-vitro</i> studies, including Fourier-transform infrared spectroscopy, differential scanning calorimetry, pH measurement, stability study, release profile and transmission electron microscopy. Furthermore, the <i>ex-vivo performance was evaluated through ex-vivo</i> skin permeation and deposition. Finally, it was subjected to an array of <i>in-vivo</i> tests, namely Draize test, histopathology, <i>In-vivo skin penetration</i>, edema size, and nociception inhibition measurements. The optimum formula with desirability (0.913) demonstrated EE% (89.21% ± 2.12%), PS (319.75 ± 10.11 nm), ZP (-55 ± 3.96 mV) and a prolonged release profile. Intriguingly, revamped skin permeation (1143 ± 32.11 µg/cm<sup>2</sup>), nociception inhibition (77%) and <i>In-vivo skin penetration</i> (144 µm) compared to DCN suspension (285 ± 21.25 µg/cm<sup>2</sup>, 26% and 48 µm, respectively) were displayed. The optimum DCN-TINV exhibited plausible safety and stability profiles consolidated with auspicious efficacy for better management of osteoarthritis.</p>\",\"PeriodicalId\":16286,\"journal\":{\"name\":\"Journal of Liposome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Liposome Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08982104.2024.2382974\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2024.2382974","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在配制富含萜烯的地卡因内含体(DCN-TINV),以有效治疗骨关节炎。研究采用 23 因子设计,研究因素包括 A:胆固醇浓度(%w/v)、B:乙醇体积(mL)和 C:磷脂酰胆碱与药物的比例。利用薄膜水合技术构建侵染体。在此,使用 Design-Expert® 软件对夹带效率 (EE%)、粒度 (PS)、多分散指数 (PDI) 和 zeta 电位 (ZP) 进行了统计分析,以选出最佳配方。检测最佳配方的选定标准是限制 PS(体外研究,包括傅立叶变换红外光谱、差示扫描量热仪、pH 值测量、稳定性研究、释放曲线和透射电子显微镜)。此外,还通过体外皮肤渗透和沉积对其体外性能进行了评估。最后,对其进行了一系列体内测试,即 Draize 试验、组织病理学、体内皮肤渗透、水肿大小和痛觉抑制测量。最佳配方的可取性(0.913)显示出 EE%(89.21% ± 2.12%)、PS(319.75 ± 10.11 nm)、ZP(-55 ± 3.96 mV)和长效释放特性。有趣的是,与 DCN 悬浮液(分别为 285 ± 21.25 µg/cm2, 26% 和 48 µm)相比,DCN-TINV 的皮肤渗透率(1143 ± 32.11 µg/cm2)、痛觉抑制率(77%)和体内皮肤穿透率(144 µm)均有所改善。最理想的 DCN-TINV 具有良好的安全性和稳定性,并具有更好地治疗骨关节炎的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transdermal application of diacerin loaded-terpene enriched invasomes: an approach to augment anti-edema and nociception inhibition activity.

This study aimed to formulate diacerein loaded terpene-enriched invasomes (DCN-TINV) to fulfill a fruitful management of osteoarthritis. A 23 factorial design was adopted, including A: cholesterol concentration (%w/v), B: ethanol volume (mL) and C: phosphatidylcholine: drug ratio as the studied factors. Invasomes were constructed using the thin film hydration technique. Herein, percent entrapment efficiency (EE%), particle size (PS), poly-dispersity index (PDI) and zeta potential (ZP) were statistically analyzed using Design-Expert® software to select the optimum formula. The selected criteria for detecting the optimum formula were restricting PS (<350 nm), dismissing PDI, magnifying ZP (as absolute value) and EE%. The selected formula was further scrutinized through multiple in-vitro studies, including Fourier-transform infrared spectroscopy, differential scanning calorimetry, pH measurement, stability study, release profile and transmission electron microscopy. Furthermore, the ex-vivo performance was evaluated through ex-vivo skin permeation and deposition. Finally, it was subjected to an array of in-vivo tests, namely Draize test, histopathology, In-vivo skin penetration, edema size, and nociception inhibition measurements. The optimum formula with desirability (0.913) demonstrated EE% (89.21% ± 2.12%), PS (319.75 ± 10.11 nm), ZP (-55 ± 3.96 mV) and a prolonged release profile. Intriguingly, revamped skin permeation (1143 ± 32.11 µg/cm2), nociception inhibition (77%) and In-vivo skin penetration (144 µm) compared to DCN suspension (285 ± 21.25 µg/cm2, 26% and 48 µm, respectively) were displayed. The optimum DCN-TINV exhibited plausible safety and stability profiles consolidated with auspicious efficacy for better management of osteoarthritis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信