银添加和变形参数对锌基生物降解合金的机械结构、生物降解、抗菌和机械性能的影响。

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Journal of Biomaterials Applications Pub Date : 2024-10-01 Epub Date: 2024-07-30 DOI:10.1177/08853282241268682
Bünyamin Aksakal, Sinan Sezek, Cevher Kürşat Macit
{"title":"银添加和变形参数对锌基生物降解合金的机械结构、生物降解、抗菌和机械性能的影响。","authors":"Bünyamin Aksakal, Sinan Sezek, Cevher Kürşat Macit","doi":"10.1177/08853282241268682","DOIUrl":null,"url":null,"abstract":"<p><p>Although low mechanical properties, Zinc (Zn) alloy systems with Copper (Cu) and Silver (Ag) as alloying elements have strong biocompatibility and biodegradability characteristics. This study examined the effects of rolling parameters and Ag alloying on the mechanical, biodegradable, and final structure of an alloy based on Zn. Comparing treated and untreated specimens, the addition of Ag led to a considerable improvement in both hardness and compressive strength. The produced alloys with varying amounts of Ag (between 1 and 4 wt%) were cold rolled at 400-800 r/min and friction coefficients between 0.3 and 0.5. The alloys' ultimate strength rose with an increase in rolling speed for Zn1Cu4Ag, and hardness and compressive strengths rose to 80HV and 470 MPa, respectively. It was demonstrated that rolling force rose somewhat with Ag concentration but significantly increased with rolling speed and friction. E. Coli and <i>S. aureus</i> were used to assess the biodegradable alloys' antibacterial properties. For the Zn-1Cu-2Ag alloy, the inclusion of Ag resulted in a considerable (50%) rise in antibacterial activity that exceeded the effects seen in other alloy systems.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"298-316"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of Silver addition and deformation parameters on mechanostructure, biodegradation, antimicrobial and mechanical properties of Zn-based biodegradable alloys.\",\"authors\":\"Bünyamin Aksakal, Sinan Sezek, Cevher Kürşat Macit\",\"doi\":\"10.1177/08853282241268682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although low mechanical properties, Zinc (Zn) alloy systems with Copper (Cu) and Silver (Ag) as alloying elements have strong biocompatibility and biodegradability characteristics. This study examined the effects of rolling parameters and Ag alloying on the mechanical, biodegradable, and final structure of an alloy based on Zn. Comparing treated and untreated specimens, the addition of Ag led to a considerable improvement in both hardness and compressive strength. The produced alloys with varying amounts of Ag (between 1 and 4 wt%) were cold rolled at 400-800 r/min and friction coefficients between 0.3 and 0.5. The alloys' ultimate strength rose with an increase in rolling speed for Zn1Cu4Ag, and hardness and compressive strengths rose to 80HV and 470 MPa, respectively. It was demonstrated that rolling force rose somewhat with Ag concentration but significantly increased with rolling speed and friction. E. Coli and <i>S. aureus</i> were used to assess the biodegradable alloys' antibacterial properties. For the Zn-1Cu-2Ag alloy, the inclusion of Ag resulted in a considerable (50%) rise in antibacterial activity that exceeded the effects seen in other alloy systems.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"298-316\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241268682\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241268682","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

以铜(Cu)和银(Ag)为合金元素的锌(Zn)合金体系虽然机械性能较低,但具有很强的生物相容性和生物降解性。本研究考察了轧制参数和 Ag 合金对锌基合金的机械性能、生物降解性和最终结构的影响。将处理过的试样与未处理的试样进行比较,发现添加 Ag 后,硬度和抗压强度均有显著提高。在 400-800 r/min 的转速和 0.3-0.5 之间的摩擦系数条件下,对所生产的含不同量 Ag(1-4 wt%)的合金进行冷轧。Zn1Cu4Ag 的合金极限强度随着轧制速度的增加而提高,硬度和抗压强度分别达到 80HV 和 470 兆帕。研究表明,轧制力随银浓度的增加而增加,但随轧制速度和摩擦力的增加而显著增加。大肠杆菌和金黄色葡萄球菌被用来评估可生物降解合金的抗菌性能。就 Zn-1Cu-2Ag 合金而言,加入 Ag 后,抗菌活性显著提高(50%),超过了其他合金体系的抗菌效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of Silver addition and deformation parameters on mechanostructure, biodegradation, antimicrobial and mechanical properties of Zn-based biodegradable alloys.

Although low mechanical properties, Zinc (Zn) alloy systems with Copper (Cu) and Silver (Ag) as alloying elements have strong biocompatibility and biodegradability characteristics. This study examined the effects of rolling parameters and Ag alloying on the mechanical, biodegradable, and final structure of an alloy based on Zn. Comparing treated and untreated specimens, the addition of Ag led to a considerable improvement in both hardness and compressive strength. The produced alloys with varying amounts of Ag (between 1 and 4 wt%) were cold rolled at 400-800 r/min and friction coefficients between 0.3 and 0.5. The alloys' ultimate strength rose with an increase in rolling speed for Zn1Cu4Ag, and hardness and compressive strengths rose to 80HV and 470 MPa, respectively. It was demonstrated that rolling force rose somewhat with Ag concentration but significantly increased with rolling speed and friction. E. Coli and S. aureus were used to assess the biodegradable alloys' antibacterial properties. For the Zn-1Cu-2Ag alloy, the inclusion of Ag resulted in a considerable (50%) rise in antibacterial activity that exceeded the effects seen in other alloy systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信