Gary Voelker, Guinevere O U Wogan, Jerry W Huntley, Potiphar M Kaliba, Dawie H DE Swardt, Rauri C K Bowie
{"title":"气候循环并不影响南部非洲一种丰富的鸟类栖息地通论物种--熟鹀(Oenanthe familiaris)的单倍型分布。","authors":"Gary Voelker, Guinevere O U Wogan, Jerry W Huntley, Potiphar M Kaliba, Dawie H DE Swardt, Rauri C K Bowie","doi":"10.1111/1749-4877.12879","DOIUrl":null,"url":null,"abstract":"<p><p>Avian species diversity in Southern Africa is remarkably high, yet the mechanisms responsible for that diversity are poorly understood. While this is particularly true with respect to species endemic to the subregion, it is unclear as to how more broadly distributed African species may have colonized southern Africa. One process that may in part account for the high bird species diversity in southern Africa is a \"species pump\" model, wherein the region was repeatedly colonized by lineages from areas further north: a pattern related to climate cycling and the eastern African arid corridor. Once occupying southern Africa, with its many varied biomes, it is possible that climate cycling further affected lineages by generating genetic diversity in multiple refugia, a pattern recently shown for several southern African bird species. Here, we used mtDNA to address these questions in a widespread, sedentary habitat generalist bird species, the familiar chat (Oenanthe familiaris). The phylogenetic structure suggests a north-to-south colonization pattern, supporting the \"species pump\" model. Haplotype diversity was partitioned into two distinct clusters: southern Africa and Malawi (East Africa). Southern African haplotypes were not geographically partitioned, and we hypothesize that this pattern has arisen because this species is a habitat generalist, and as such resilient to habitat-altering climate perturbations. Based on our phylogenetic results, we discuss the validity of currently recognized subspecies.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate cycling did not affect haplotype distribution in an abundant Southern African avian habitat generalist species, the familiar chat (Oenanthe familiaris).\",\"authors\":\"Gary Voelker, Guinevere O U Wogan, Jerry W Huntley, Potiphar M Kaliba, Dawie H DE Swardt, Rauri C K Bowie\",\"doi\":\"10.1111/1749-4877.12879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Avian species diversity in Southern Africa is remarkably high, yet the mechanisms responsible for that diversity are poorly understood. While this is particularly true with respect to species endemic to the subregion, it is unclear as to how more broadly distributed African species may have colonized southern Africa. One process that may in part account for the high bird species diversity in southern Africa is a \\\"species pump\\\" model, wherein the region was repeatedly colonized by lineages from areas further north: a pattern related to climate cycling and the eastern African arid corridor. Once occupying southern Africa, with its many varied biomes, it is possible that climate cycling further affected lineages by generating genetic diversity in multiple refugia, a pattern recently shown for several southern African bird species. Here, we used mtDNA to address these questions in a widespread, sedentary habitat generalist bird species, the familiar chat (Oenanthe familiaris). The phylogenetic structure suggests a north-to-south colonization pattern, supporting the \\\"species pump\\\" model. Haplotype diversity was partitioned into two distinct clusters: southern Africa and Malawi (East Africa). Southern African haplotypes were not geographically partitioned, and we hypothesize that this pattern has arisen because this species is a habitat generalist, and as such resilient to habitat-altering climate perturbations. Based on our phylogenetic results, we discuss the validity of currently recognized subspecies.</p>\",\"PeriodicalId\":13654,\"journal\":{\"name\":\"Integrative zoology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1749-4877.12879\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12879","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Climate cycling did not affect haplotype distribution in an abundant Southern African avian habitat generalist species, the familiar chat (Oenanthe familiaris).
Avian species diversity in Southern Africa is remarkably high, yet the mechanisms responsible for that diversity are poorly understood. While this is particularly true with respect to species endemic to the subregion, it is unclear as to how more broadly distributed African species may have colonized southern Africa. One process that may in part account for the high bird species diversity in southern Africa is a "species pump" model, wherein the region was repeatedly colonized by lineages from areas further north: a pattern related to climate cycling and the eastern African arid corridor. Once occupying southern Africa, with its many varied biomes, it is possible that climate cycling further affected lineages by generating genetic diversity in multiple refugia, a pattern recently shown for several southern African bird species. Here, we used mtDNA to address these questions in a widespread, sedentary habitat generalist bird species, the familiar chat (Oenanthe familiaris). The phylogenetic structure suggests a north-to-south colonization pattern, supporting the "species pump" model. Haplotype diversity was partitioned into two distinct clusters: southern Africa and Malawi (East Africa). Southern African haplotypes were not geographically partitioned, and we hypothesize that this pattern has arisen because this species is a habitat generalist, and as such resilient to habitat-altering climate perturbations. Based on our phylogenetic results, we discuss the validity of currently recognized subspecies.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations