{"title":"runt相关转录因子-2基因错义非同义单核苷酸多态性的特征--硅学方法。","authors":"Ragul Shiv, Rakeswari, Nilofer Farjana, Usha Subbiah, Athira Ajith, Anitha Balaji, S Mohanasatheesh","doi":"10.4103/ijp.ijp_533_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Single-nucleotide polymorphism (SNP) codes for multiple amino acids, impacting protein functions and disease prognosis. Runt-related transcription factor-2 (RUNX2), a transcription factor linked to osteoblast differentiation, regulates cell proliferation in endothelium and osteoblastic cells. Understanding Runx2's role in nonosseous tissues is rapidly advancing. This study aims to identify harmful SNPs of the RUNX2 gene that may alter disease susceptibility using computational techniques.</p><p><strong>Methods: </strong>The study uses various in silico methods to identify nonsynonymous SNPs (nsSNPs) of the RUNX2 gene, which could potentially alter protein structure and functions, with further analyses by I-Mutant, ConSurf, Netsurf 3.0, GeneMANIA, and Have (y)Our Protein Explained.</p><p><strong>Results: </strong>Six missense nsSNPs were identified as potentially harmful, disease-causing, and damaging. Four were found to be unstable, while five were conserved. All six nsSNPs had a coiled secondary structure. Five nsSNPs were found to be destabilized.</p><p><strong>Conclusion: </strong>The RUNX2 gene's deleterious missense nsSNPs were identified by this study, and they may be exploited in future experimental studies. These high-risk nsSNPs might be considered target molecules in therapeutic and diagnostic therapies in teeth and bone development.</p>","PeriodicalId":13490,"journal":{"name":"Indian Journal of Pharmacology","volume":"56 3","pages":"198-205"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286098/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of missense nonsynonymous single-nucleotide polymorphism of runt-related transcription factor-2 gene - An in silico approach.\",\"authors\":\"Ragul Shiv, Rakeswari, Nilofer Farjana, Usha Subbiah, Athira Ajith, Anitha Balaji, S Mohanasatheesh\",\"doi\":\"10.4103/ijp.ijp_533_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Single-nucleotide polymorphism (SNP) codes for multiple amino acids, impacting protein functions and disease prognosis. Runt-related transcription factor-2 (RUNX2), a transcription factor linked to osteoblast differentiation, regulates cell proliferation in endothelium and osteoblastic cells. Understanding Runx2's role in nonosseous tissues is rapidly advancing. This study aims to identify harmful SNPs of the RUNX2 gene that may alter disease susceptibility using computational techniques.</p><p><strong>Methods: </strong>The study uses various in silico methods to identify nonsynonymous SNPs (nsSNPs) of the RUNX2 gene, which could potentially alter protein structure and functions, with further analyses by I-Mutant, ConSurf, Netsurf 3.0, GeneMANIA, and Have (y)Our Protein Explained.</p><p><strong>Results: </strong>Six missense nsSNPs were identified as potentially harmful, disease-causing, and damaging. Four were found to be unstable, while five were conserved. All six nsSNPs had a coiled secondary structure. Five nsSNPs were found to be destabilized.</p><p><strong>Conclusion: </strong>The RUNX2 gene's deleterious missense nsSNPs were identified by this study, and they may be exploited in future experimental studies. These high-risk nsSNPs might be considered target molecules in therapeutic and diagnostic therapies in teeth and bone development.</p>\",\"PeriodicalId\":13490,\"journal\":{\"name\":\"Indian Journal of Pharmacology\",\"volume\":\"56 3\",\"pages\":\"198-205\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286098/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/ijp.ijp_533_23\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/ijp.ijp_533_23","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Characterization of missense nonsynonymous single-nucleotide polymorphism of runt-related transcription factor-2 gene - An in silico approach.
Objectives: Single-nucleotide polymorphism (SNP) codes for multiple amino acids, impacting protein functions and disease prognosis. Runt-related transcription factor-2 (RUNX2), a transcription factor linked to osteoblast differentiation, regulates cell proliferation in endothelium and osteoblastic cells. Understanding Runx2's role in nonosseous tissues is rapidly advancing. This study aims to identify harmful SNPs of the RUNX2 gene that may alter disease susceptibility using computational techniques.
Methods: The study uses various in silico methods to identify nonsynonymous SNPs (nsSNPs) of the RUNX2 gene, which could potentially alter protein structure and functions, with further analyses by I-Mutant, ConSurf, Netsurf 3.0, GeneMANIA, and Have (y)Our Protein Explained.
Results: Six missense nsSNPs were identified as potentially harmful, disease-causing, and damaging. Four were found to be unstable, while five were conserved. All six nsSNPs had a coiled secondary structure. Five nsSNPs were found to be destabilized.
Conclusion: The RUNX2 gene's deleterious missense nsSNPs were identified by this study, and they may be exploited in future experimental studies. These high-risk nsSNPs might be considered target molecules in therapeutic and diagnostic therapies in teeth and bone development.
期刊介绍:
Indian Journal of Pharmacology accepts, in English, review articles, articles for educational forum, original research articles (full length and short communications), letter to editor, case reports and interesting fillers. Articles concerning all aspects of pharmacology will be considered. Articles of general interest (e.g. methods, therapeutics, medical education, interesting websites, new drug information and commentary on a recent topic) are also welcome.