{"title":"人羊膜上皮细胞改善子宫螺旋动脉重塑,从而改善大鼠模型中的子痫前期症状。","authors":"Lanxin Geng, Zuchao Qin, Ting-Li Han, Yanqiu Zhou, Xiaocui Zhong, Guanghui Zhang, Xiaojing Dong","doi":"10.1093/biolre/ioae113","DOIUrl":null,"url":null,"abstract":"<p><p>Preeclampsia (PE) is a multisystem pregnancy disorder characterized by impaired remodeling of placental spiral arteries, which leads to the release of pro-inflammatory cytokines and anti-angiogenic agents. However, treatment options for PE are limited, with termination of pregnancy being the only curative option. In this work, we investigated the effects of human amniotic epithelial cells (hAECs) in PE rat model. The rats were induced with lipopolysaccharide (LPS) on gestational day 14.5 followed by injection of hAECs and human umbilical cord mesenchymal stem cells 24 h later. The hAECs treatment resulted in a reduction in blood pressure and proteinuria in the PE rat model. Furthermore, hAECs treatment decreased levels of pro-inflammatory cytokines, reduced inflammatory cells aggregation, and alleviated the damage to placental spiral arteries by downregulating the expression of anti-angiogenic factor and upregulating proangiogenic factor. In vitro experiments confirmed that hAECs treatment restored the proliferation, migration, and angiogenesis of LPS-damaged human umbilical vein endothelial cells. Additionally, hAECs treatment had positive effects on fetal weight and neurological development in the PE group, with no negative effects on the physical development or fertility of offspring rats. These results suggested that hAECs transplantation may be a novel adjuvant therapeutic strategy for PE by reducing the inflammatory and enhancing placental spiral artery angiogenesis.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human amniotic epithelial cells improve uterine spiral artery remodeling to ameliorate preeclampsia in a rat model†.\",\"authors\":\"Lanxin Geng, Zuchao Qin, Ting-Li Han, Yanqiu Zhou, Xiaocui Zhong, Guanghui Zhang, Xiaojing Dong\",\"doi\":\"10.1093/biolre/ioae113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Preeclampsia (PE) is a multisystem pregnancy disorder characterized by impaired remodeling of placental spiral arteries, which leads to the release of pro-inflammatory cytokines and anti-angiogenic agents. However, treatment options for PE are limited, with termination of pregnancy being the only curative option. In this work, we investigated the effects of human amniotic epithelial cells (hAECs) in PE rat model. The rats were induced with lipopolysaccharide (LPS) on gestational day 14.5 followed by injection of hAECs and human umbilical cord mesenchymal stem cells 24 h later. The hAECs treatment resulted in a reduction in blood pressure and proteinuria in the PE rat model. Furthermore, hAECs treatment decreased levels of pro-inflammatory cytokines, reduced inflammatory cells aggregation, and alleviated the damage to placental spiral arteries by downregulating the expression of anti-angiogenic factor and upregulating proangiogenic factor. In vitro experiments confirmed that hAECs treatment restored the proliferation, migration, and angiogenesis of LPS-damaged human umbilical vein endothelial cells. Additionally, hAECs treatment had positive effects on fetal weight and neurological development in the PE group, with no negative effects on the physical development or fertility of offspring rats. These results suggested that hAECs transplantation may be a novel adjuvant therapeutic strategy for PE by reducing the inflammatory and enhancing placental spiral artery angiogenesis.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/biolre/ioae113\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioae113","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
子痫前期(PE)是一种多系统妊娠疾病,其特点是胎盘螺旋动脉重塑受损,导致促炎细胞因子和抗血管生成因子的释放。然而,PE 的治疗方案有限,终止妊娠是唯一的治疗方案。在这项工作中,我们研究了人羊膜上皮细胞(hAECs)对 PE 大鼠模型的影响。在妊娠14.5天用脂多糖(LPS)诱导大鼠,24小时后注射hAECs和人脐带间充质干细胞(hUC-MSCs)。hAECs 处理可降低 PE 大鼠模型的血压和蛋白尿。此外,hAECs治疗降低了促炎细胞因子的水平,减少了炎症细胞的聚集,并通过下调抗血管生成因子的表达和上调促血管生成因子的表达,减轻了胎盘螺旋动脉的损伤。体外实验证实,hAECs 处理可恢复 LPS 损伤的人脐静脉内皮细胞(hUVECs)的增殖、迁移和血管生成。此外,hAECs 治疗对 PE 组胎儿体重和神经系统发育有积极影响,对后代大鼠的身体发育和生育能力没有负面影响。这些结果表明,hAECs移植可减轻炎症反应并促进胎盘螺旋动脉血管生成,是一种新型的PE辅助治疗策略。
Human amniotic epithelial cells improve uterine spiral artery remodeling to ameliorate preeclampsia in a rat model†.
Preeclampsia (PE) is a multisystem pregnancy disorder characterized by impaired remodeling of placental spiral arteries, which leads to the release of pro-inflammatory cytokines and anti-angiogenic agents. However, treatment options for PE are limited, with termination of pregnancy being the only curative option. In this work, we investigated the effects of human amniotic epithelial cells (hAECs) in PE rat model. The rats were induced with lipopolysaccharide (LPS) on gestational day 14.5 followed by injection of hAECs and human umbilical cord mesenchymal stem cells 24 h later. The hAECs treatment resulted in a reduction in blood pressure and proteinuria in the PE rat model. Furthermore, hAECs treatment decreased levels of pro-inflammatory cytokines, reduced inflammatory cells aggregation, and alleviated the damage to placental spiral arteries by downregulating the expression of anti-angiogenic factor and upregulating proangiogenic factor. In vitro experiments confirmed that hAECs treatment restored the proliferation, migration, and angiogenesis of LPS-damaged human umbilical vein endothelial cells. Additionally, hAECs treatment had positive effects on fetal weight and neurological development in the PE group, with no negative effects on the physical development or fertility of offspring rats. These results suggested that hAECs transplantation may be a novel adjuvant therapeutic strategy for PE by reducing the inflammatory and enhancing placental spiral artery angiogenesis.