对一种生物增强剂进行实地测试,以对受氯乙烯污染的场地进行生物修复。

IF 1.8 4区 生物学 Q3 BIOLOGY
Biologia futura Pub Date : 2024-09-01 Epub Date: 2024-07-29 DOI:10.1007/s42977-024-00230-6
Gergely Krett, Csaba Romsics, Laura Jurecska, Viktória Bódai, Balázs Erdélyi, Károly Márialigeti, Zsuzsanna Nagymáté
{"title":"对一种生物增强剂进行实地测试,以对受氯乙烯污染的场地进行生物修复。","authors":"Gergely Krett, Csaba Romsics, Laura Jurecska, Viktória Bódai, Balázs Erdélyi, Károly Márialigeti, Zsuzsanna Nagymáté","doi":"10.1007/s42977-024-00230-6","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorinated ethenes are toxic compounds that were widely used in the past, and their improper handling and storage caused notable pollutions worldwide. In situ bioremediation by reductive dechlorination of bacteria is a cost-effective and ecologically friendly way to eliminate these pollutions. During the present study, the efficiency of a previously developed bioaugmentation agent combined with biostimulation was tested under field conditions in contaminated soil. Furthermore, the preservation of dechlorinating ability was also investigated in a long-term experiment. Initially, aerobic conditions were present in the groundwater with possible presence of anaerobic micro-niches providing habitat for Brocadia related anammox bacteria. \"Candidatus Omnitrophus\" was also identified as a dominant member of community then. Significant changes were detected after the biostimulation, anaerobic conditions established and most of the dominant OTUs were related to fermentative taxa (e.g. Clostridium, Trichococcus and Macillibacteroides). Dominant presence of vinyl-chloride coupled with the lack of vinyl-chloride reductase gene was observed. The most notable change after the bioaugmentation was the significant decrease in the pollutant quantities and the parallel increase in the vcrA gene copy numbers. Similar to post-biostimulation state, fermentative bacteria dominated the community. Bacterial community composition transformed considerably with time after the treatment, dominance of fermentative-mainly Firmicutes related-taxa decreased and chemolithotrophic bacteria became abundant, but the dechlorinating potential of the community remained and could be induced by the reappearance of the pollutants even after 4 years.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":" ","pages":"289-299"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field test of a bioaugmentation agent for the bioremediation of chlorinated ethene contaminated sites.\",\"authors\":\"Gergely Krett, Csaba Romsics, Laura Jurecska, Viktória Bódai, Balázs Erdélyi, Károly Márialigeti, Zsuzsanna Nagymáté\",\"doi\":\"10.1007/s42977-024-00230-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chlorinated ethenes are toxic compounds that were widely used in the past, and their improper handling and storage caused notable pollutions worldwide. In situ bioremediation by reductive dechlorination of bacteria is a cost-effective and ecologically friendly way to eliminate these pollutions. During the present study, the efficiency of a previously developed bioaugmentation agent combined with biostimulation was tested under field conditions in contaminated soil. Furthermore, the preservation of dechlorinating ability was also investigated in a long-term experiment. Initially, aerobic conditions were present in the groundwater with possible presence of anaerobic micro-niches providing habitat for Brocadia related anammox bacteria. \\\"Candidatus Omnitrophus\\\" was also identified as a dominant member of community then. Significant changes were detected after the biostimulation, anaerobic conditions established and most of the dominant OTUs were related to fermentative taxa (e.g. Clostridium, Trichococcus and Macillibacteroides). Dominant presence of vinyl-chloride coupled with the lack of vinyl-chloride reductase gene was observed. The most notable change after the bioaugmentation was the significant decrease in the pollutant quantities and the parallel increase in the vcrA gene copy numbers. Similar to post-biostimulation state, fermentative bacteria dominated the community. Bacterial community composition transformed considerably with time after the treatment, dominance of fermentative-mainly Firmicutes related-taxa decreased and chemolithotrophic bacteria became abundant, but the dechlorinating potential of the community remained and could be induced by the reappearance of the pollutants even after 4 years.</p>\",\"PeriodicalId\":8853,\"journal\":{\"name\":\"Biologia futura\",\"volume\":\" \",\"pages\":\"289-299\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia futura\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42977-024-00230-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia futura","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42977-024-00230-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

氯化乙烯是一种有毒化合物,过去曾被广泛使用,其不当的处理和储存在全球范围内造成了显著的污染。通过细菌的还原脱氯作用进行原位生物修复是消除这些污染的一种既经济又生态友好的方法。在本研究中,我们在受污染土壤的实地条件下测试了之前开发的生物增殖剂与生物刺激相结合的效率。此外,还在一项长期实验中调查了除氯能力的保持情况。最初,地下水中存在好氧条件,可能存在厌氧微生物,为 Brocadia 相关厌氧菌提供了栖息地。当时还发现 "Candidatus Omnitrophus "是群落的主要成员。在进行生物刺激、建立厌氧条件后,群落发生了显著变化,大多数优势 OTU 与发酵类群(如梭菌、毛球菌和 Macillibacteroides)有关。观察到主要存在氯乙烯,但缺乏氯乙烯还原酶基因。生物增殖后最显著的变化是污染物的数量显著减少,而 vcrA 基因的拷贝数却同时增加。与生物刺激后的状态相似,发酵菌在群落中占主导地位。随着时间的推移,处理后的细菌群落组成发生了很大变化,发酵菌--主要是固着菌相关菌群的优势地位下降,化石营养菌变得丰富,但群落的脱氯潜力依然存在,即使在 4 年后污染物再次出现时也能诱发脱氯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Field test of a bioaugmentation agent for the bioremediation of chlorinated ethene contaminated sites.

Field test of a bioaugmentation agent for the bioremediation of chlorinated ethene contaminated sites.

Chlorinated ethenes are toxic compounds that were widely used in the past, and their improper handling and storage caused notable pollutions worldwide. In situ bioremediation by reductive dechlorination of bacteria is a cost-effective and ecologically friendly way to eliminate these pollutions. During the present study, the efficiency of a previously developed bioaugmentation agent combined with biostimulation was tested under field conditions in contaminated soil. Furthermore, the preservation of dechlorinating ability was also investigated in a long-term experiment. Initially, aerobic conditions were present in the groundwater with possible presence of anaerobic micro-niches providing habitat for Brocadia related anammox bacteria. "Candidatus Omnitrophus" was also identified as a dominant member of community then. Significant changes were detected after the biostimulation, anaerobic conditions established and most of the dominant OTUs were related to fermentative taxa (e.g. Clostridium, Trichococcus and Macillibacteroides). Dominant presence of vinyl-chloride coupled with the lack of vinyl-chloride reductase gene was observed. The most notable change after the bioaugmentation was the significant decrease in the pollutant quantities and the parallel increase in the vcrA gene copy numbers. Similar to post-biostimulation state, fermentative bacteria dominated the community. Bacterial community composition transformed considerably with time after the treatment, dominance of fermentative-mainly Firmicutes related-taxa decreased and chemolithotrophic bacteria became abundant, but the dechlorinating potential of the community remained and could be induced by the reappearance of the pollutants even after 4 years.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biologia futura
Biologia futura Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
27
期刊介绍: How can the scientific knowledge we possess now influence that future? That is, the FUTURE of Earth and life − of humankind. Can we make choices in the present to change our future? How can 21st century biological research ask proper scientific questions and find solid answers? Addressing these questions is the main goal of Biologia Futura (formerly Acta Biologica Hungarica). In keeping with the name, the new mission is to focus on areas of biology where major advances are to be expected, areas of biology with strong inter-disciplinary connection and to provide new avenues for future research in biology. Biologia Futura aims to publish articles from all fields of biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信