{"title":"利用机器学习和环境驱动因素监测南达科他州东部覆盖作物和耕作方法的空间分布。","authors":"Khushboo Jain, Ranjeet John, Nathan Torbick, Venkatesh Kolluru, Sakshi Saraf, Abhinav Chandel, Geoffrey M. Henebry, Meghann Jarchow","doi":"10.1007/s00267-024-02021-0","DOIUrl":null,"url":null,"abstract":"<div><p>The adoption of conservation agriculture methods, such as conservation tillage and cover cropping, is a viable alternative to conventional farming practices for improving soil health and reducing soil carbon losses. Despite their significance in mitigating climate change, there are very few studies that have assessed the overall spatial distribution of cover crops and tillage practices based on the farm’s pedoclimatic and topographic characteristics. Hence, the primary objective of this study was to use multiple satellite-derived indices and environmental drivers to infer the level of tillage intensity and identify the presence of cover crops in eastern South Dakota (SD). We used a machine learning classifier trained with in situ field samples and environmental drivers acquired from different remote sensing datasets for 2022 and 2023 to map the conservation agriculture practices. Our classification accuracies (>80%) indicate that the employed satellite spectral indices and environmental variables could successfully detect the presence of cover crops and the tillage intensity in the study region. Our analysis revealed that 4% of the corn (<i>Zea mays</i>) and soybean (<i>Glycine max</i>) fields in eastern SD had a cover crop during either the fall of 2022 or the spring of 2023. We also found that environmental factors, specifically seasonal precipitation, growing degree days, and surface texture, significantly impacted the use of conservation practices. The methods developed through this research may provide a viable means for tracking and documenting farmers’ agricultural management techniques. Our study contributes to developing a measurement, reporting, and verification (MRV) solution that could help used to monitor various climate-smart agricultural practices.</p></div>","PeriodicalId":543,"journal":{"name":"Environmental Management","volume":"74 4","pages":"742 - 756"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392983/pdf/","citationCount":"0","resultStr":"{\"title\":\"Monitoring the Spatial Distribution of Cover Crops and Tillage Practices Using Machine Learning and Environmental Drivers across Eastern South Dakota\",\"authors\":\"Khushboo Jain, Ranjeet John, Nathan Torbick, Venkatesh Kolluru, Sakshi Saraf, Abhinav Chandel, Geoffrey M. Henebry, Meghann Jarchow\",\"doi\":\"10.1007/s00267-024-02021-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The adoption of conservation agriculture methods, such as conservation tillage and cover cropping, is a viable alternative to conventional farming practices for improving soil health and reducing soil carbon losses. Despite their significance in mitigating climate change, there are very few studies that have assessed the overall spatial distribution of cover crops and tillage practices based on the farm’s pedoclimatic and topographic characteristics. Hence, the primary objective of this study was to use multiple satellite-derived indices and environmental drivers to infer the level of tillage intensity and identify the presence of cover crops in eastern South Dakota (SD). We used a machine learning classifier trained with in situ field samples and environmental drivers acquired from different remote sensing datasets for 2022 and 2023 to map the conservation agriculture practices. Our classification accuracies (>80%) indicate that the employed satellite spectral indices and environmental variables could successfully detect the presence of cover crops and the tillage intensity in the study region. Our analysis revealed that 4% of the corn (<i>Zea mays</i>) and soybean (<i>Glycine max</i>) fields in eastern SD had a cover crop during either the fall of 2022 or the spring of 2023. We also found that environmental factors, specifically seasonal precipitation, growing degree days, and surface texture, significantly impacted the use of conservation practices. The methods developed through this research may provide a viable means for tracking and documenting farmers’ agricultural management techniques. Our study contributes to developing a measurement, reporting, and verification (MRV) solution that could help used to monitor various climate-smart agricultural practices.</p></div>\",\"PeriodicalId\":543,\"journal\":{\"name\":\"Environmental Management\",\"volume\":\"74 4\",\"pages\":\"742 - 756\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392983/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00267-024-02021-0\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00267-024-02021-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Monitoring the Spatial Distribution of Cover Crops and Tillage Practices Using Machine Learning and Environmental Drivers across Eastern South Dakota
The adoption of conservation agriculture methods, such as conservation tillage and cover cropping, is a viable alternative to conventional farming practices for improving soil health and reducing soil carbon losses. Despite their significance in mitigating climate change, there are very few studies that have assessed the overall spatial distribution of cover crops and tillage practices based on the farm’s pedoclimatic and topographic characteristics. Hence, the primary objective of this study was to use multiple satellite-derived indices and environmental drivers to infer the level of tillage intensity and identify the presence of cover crops in eastern South Dakota (SD). We used a machine learning classifier trained with in situ field samples and environmental drivers acquired from different remote sensing datasets for 2022 and 2023 to map the conservation agriculture practices. Our classification accuracies (>80%) indicate that the employed satellite spectral indices and environmental variables could successfully detect the presence of cover crops and the tillage intensity in the study region. Our analysis revealed that 4% of the corn (Zea mays) and soybean (Glycine max) fields in eastern SD had a cover crop during either the fall of 2022 or the spring of 2023. We also found that environmental factors, specifically seasonal precipitation, growing degree days, and surface texture, significantly impacted the use of conservation practices. The methods developed through this research may provide a viable means for tracking and documenting farmers’ agricultural management techniques. Our study contributes to developing a measurement, reporting, and verification (MRV) solution that could help used to monitor various climate-smart agricultural practices.
期刊介绍:
Environmental Management offers research and opinions on use and conservation of natural resources, protection of habitats and control of hazards, spanning the field of environmental management without regard to traditional disciplinary boundaries. The journal aims to improve communication, making ideas and results from any field available to practitioners from other backgrounds. Contributions are drawn from biology, botany, chemistry, climatology, ecology, ecological economics, environmental engineering, fisheries, environmental law, forest sciences, geosciences, information science, public affairs, public health, toxicology, zoology and more.
As the principal user of nature, humanity is responsible for ensuring that its environmental impacts are benign rather than catastrophic. Environmental Management presents the work of academic researchers and professionals outside universities, including those in business, government, research establishments, and public interest groups, presenting a wide spectrum of viewpoints and approaches.