黑木耳细胞对长期和短期脱水反应的初步调查。

IF 3.6 4区 生物学 Q2 ENVIRONMENTAL SCIENCES
Cassaro Alessia, D' Alò Federica, Pacelli Claudia, Cavalazzi Barbara, Zucconi Laura, Onofri Silvano
{"title":"黑木耳细胞对长期和短期脱水反应的初步调查。","authors":"Cassaro Alessia,&nbsp;D' Alò Federica,&nbsp;Pacelli Claudia,&nbsp;Cavalazzi Barbara,&nbsp;Zucconi Laura,&nbsp;Onofri Silvano","doi":"10.1111/1758-2229.13309","DOIUrl":null,"url":null,"abstract":"<p>The McMurdo Dry Valleys in Southern Victoria Land, Antarctica, are known for their extreme aridity, cold, and nutrient-poor conditions. These valleys provide a valuable comparison to environments on Mars. The survival of microorganisms in these areas hinges on their ability to withstand dehydration due to the limited availability of liquid water. Some microorganisms have adapted to survive extended periods of metabolic inactivity and dehydration, a physiological response to the harsh conditions in which they exist. This adaptation is significant for astrobiology studies as it allows for testing the resilience of microorganisms under extraterrestrial conditions, exploring the boundaries and potential for life beyond Earth. In this study, we examined the survivability, metabolic activity, cellular membrane integrity, and ultrastructural damage of <i>Cryomyces antarcticus</i>, a eukaryotic organism used for astrobiological studies, following two dehydration processes. We conducted a fast dehydration process, simulating what happens on the surface of Antarctic rocks under typical environmental conditions, and a slow dehydration process, which is commonly used in astrobiological experiments. Our findings revealed a higher percentage of damaged cells following slow dehydration treatments, confirming that rapid dehydration reflects the adaptability of microorganisms to respond to sudden and drastic changes in the Antarctic environment.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286975/pdf/","citationCount":"0","resultStr":"{\"title\":\"A preliminary survey of the cellular responses of the black fungus Cryomyces antarcticus to long and short-term dehydration\",\"authors\":\"Cassaro Alessia,&nbsp;D' Alò Federica,&nbsp;Pacelli Claudia,&nbsp;Cavalazzi Barbara,&nbsp;Zucconi Laura,&nbsp;Onofri Silvano\",\"doi\":\"10.1111/1758-2229.13309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The McMurdo Dry Valleys in Southern Victoria Land, Antarctica, are known for their extreme aridity, cold, and nutrient-poor conditions. These valleys provide a valuable comparison to environments on Mars. The survival of microorganisms in these areas hinges on their ability to withstand dehydration due to the limited availability of liquid water. Some microorganisms have adapted to survive extended periods of metabolic inactivity and dehydration, a physiological response to the harsh conditions in which they exist. This adaptation is significant for astrobiology studies as it allows for testing the resilience of microorganisms under extraterrestrial conditions, exploring the boundaries and potential for life beyond Earth. In this study, we examined the survivability, metabolic activity, cellular membrane integrity, and ultrastructural damage of <i>Cryomyces antarcticus</i>, a eukaryotic organism used for astrobiological studies, following two dehydration processes. We conducted a fast dehydration process, simulating what happens on the surface of Antarctic rocks under typical environmental conditions, and a slow dehydration process, which is commonly used in astrobiological experiments. Our findings revealed a higher percentage of damaged cells following slow dehydration treatments, confirming that rapid dehydration reflects the adaptability of microorganisms to respond to sudden and drastic changes in the Antarctic environment.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"16 4\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286975/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13309\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13309","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

南极洲维多利亚陆地南部的麦克默多干谷以极端干旱、寒冷和缺乏营养而闻名。这些山谷提供了与火星环境进行比较的宝贵条件。由于液态水的供应有限,微生物在这些地区的生存取决于它们承受脱水的能力。一些微生物已经适应了长时间的新陈代谢不活跃和脱水,这是对它们生存的恶劣条件的一种生理反应。这种适应性对天体生物学研究意义重大,因为它可以测试微生物在地外条件下的恢复能力,探索地球以外生命的边界和潜力。在这项研究中,我们考察了用于天体生物学研究的真核生物--南极隐杆线虫在两种脱水过程后的存活能力、代谢活动、细胞膜完整性和超微结构损伤。我们进行了快速脱水过程(模拟南极岩石表面在典型环境条件下发生的情况)和缓慢脱水过程(通常用于天体生物学实验)。我们的研究结果表明,在慢速脱水处理过程中,受损细胞的比例较高,这证实了快速脱水反映了微生物对南极环境突变和剧烈变化的适应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A preliminary survey of the cellular responses of the black fungus Cryomyces antarcticus to long and short-term dehydration

A preliminary survey of the cellular responses of the black fungus Cryomyces antarcticus to long and short-term dehydration

The McMurdo Dry Valleys in Southern Victoria Land, Antarctica, are known for their extreme aridity, cold, and nutrient-poor conditions. These valleys provide a valuable comparison to environments on Mars. The survival of microorganisms in these areas hinges on their ability to withstand dehydration due to the limited availability of liquid water. Some microorganisms have adapted to survive extended periods of metabolic inactivity and dehydration, a physiological response to the harsh conditions in which they exist. This adaptation is significant for astrobiology studies as it allows for testing the resilience of microorganisms under extraterrestrial conditions, exploring the boundaries and potential for life beyond Earth. In this study, we examined the survivability, metabolic activity, cellular membrane integrity, and ultrastructural damage of Cryomyces antarcticus, a eukaryotic organism used for astrobiological studies, following two dehydration processes. We conducted a fast dehydration process, simulating what happens on the surface of Antarctic rocks under typical environmental conditions, and a slow dehydration process, which is commonly used in astrobiological experiments. Our findings revealed a higher percentage of damaged cells following slow dehydration treatments, confirming that rapid dehydration reflects the adaptability of microorganisms to respond to sudden and drastic changes in the Antarctic environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Microbiology Reports
Environmental Microbiology Reports ENVIRONMENTAL SCIENCES-MICROBIOLOGY
CiteScore
6.00
自引率
3.00%
发文量
91
审稿时长
3.0 months
期刊介绍: The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side. Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信