{"title":"在压力下","authors":"Gene Chong","doi":"10.1038/s41589-024-01696-0","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":12.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Under pressure\",\"authors\":\"Gene Chong\",\"doi\":\"10.1038/s41589-024-01696-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":18832,\"journal\":{\"name\":\"Nature chemical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41589-024-01696-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41589-024-01696-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
深海动物生活在高压和低温条件下,但它们对这些条件的分子适应性却不为人知。Winnikoff 等人现在发现了使不同栉水母(栉水母)物种适应不同海洋深度的脂质特性。作者分析了在 0 至 4000 米不同深度以及热带、温带和北极不同纬度温度下采集的栉水母组织。深海栉水母在大气压力下会解体,并表现出脂膜结构的丧失。从深海栉水母中提取的脂质在与海洋深处相似的条件下形成了层状相,但在较低的压力下则转变为非薄膜相。高压环境中的主要脂质种类是磷脂酰乙醇胺(PPE),占深海栉水母磷脂的 73%。在大气条件下,PPE 单层具有高度负曲率,向脂质头基弯曲,而在较高压力下,则向零曲率过渡,具有更高的流动性。高压下的另一个特殊适应现象是脂质酰基链长度增加,而酰基链中的双键数量则随着压力的增加和温度的降低而增加。此外,在温暖、浅水栖息的栉水母膜中发现的 PPE 被更多的正曲率诱导脂质和具有更多饱和酰基链的脂质所抵消。在大肠杆菌的平行实验中,与对照细胞相比,合成 PPE 的细胞的生长率和存活率对压力的敏感性较低。相比之下,合成磷脂酰胆碱的大肠杆菌对压力更为敏感,因为磷脂酰胆碱能增加膜的流动性,但曲率较低。因此,与低温适应不同,膜流动性的增加不足以实现压力适应,还需要能诱导高膜曲率的脂质:科学》384,1482-1488 (2024)
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.