内侧前额叶皮层中回避学习的群体级编码

IF 21.2 1区 医学 Q1 NEUROSCIENCES
Benjamin Ehret, Roman Boehringer, Elizabeth A. Amadei, Maria R. Cervera, Christian Henning, Aniruddh R. Galgali, Valerio Mante, Benjamin F. Grewe
{"title":"内侧前额叶皮层中回避学习的群体级编码","authors":"Benjamin Ehret, Roman Boehringer, Elizabeth A. Amadei, Maria R. Cervera, Christian Henning, Aniruddh R. Galgali, Valerio Mante, Benjamin F. Grewe","doi":"10.1038/s41593-024-01704-5","DOIUrl":null,"url":null,"abstract":"The medial prefrontal cortex (mPFC) has been proposed to link sensory inputs and behavioral outputs to mediate the execution of learned behaviors. However, how such a link is implemented has remained unclear. To measure prefrontal neural correlates of sensory stimuli and learned behaviors, we performed population calcium imaging during a new tone-signaled active avoidance paradigm in mice. We developed an analysis approach based on dimensionality reduction and decoding that allowed us to identify interpretable task-related population activity patterns. While a large fraction of tone-evoked activity was not informative about behavior execution, we identified an activity pattern that was predictive of tone-induced avoidance actions and did not occur for spontaneous actions with similar motion kinematics. Moreover, this avoidance-specific activity differed between distinct avoidance actions learned in two consecutive tasks. Overall, our results are consistent with a model in which mPFC contributes to the selection of goal-directed actions by transforming sensory inputs into specific behavioral outputs through distributed population-level computations. Ehret et al. uncover neural activity patterns in the prefrontal cortex that link sensory stimuli to learned behavioral responses by isolating interpretable activity patterns that are shared among mice performing the same task.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41593-024-01704-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Population-level coding of avoidance learning in medial prefrontal cortex\",\"authors\":\"Benjamin Ehret, Roman Boehringer, Elizabeth A. Amadei, Maria R. Cervera, Christian Henning, Aniruddh R. Galgali, Valerio Mante, Benjamin F. Grewe\",\"doi\":\"10.1038/s41593-024-01704-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The medial prefrontal cortex (mPFC) has been proposed to link sensory inputs and behavioral outputs to mediate the execution of learned behaviors. However, how such a link is implemented has remained unclear. To measure prefrontal neural correlates of sensory stimuli and learned behaviors, we performed population calcium imaging during a new tone-signaled active avoidance paradigm in mice. We developed an analysis approach based on dimensionality reduction and decoding that allowed us to identify interpretable task-related population activity patterns. While a large fraction of tone-evoked activity was not informative about behavior execution, we identified an activity pattern that was predictive of tone-induced avoidance actions and did not occur for spontaneous actions with similar motion kinematics. Moreover, this avoidance-specific activity differed between distinct avoidance actions learned in two consecutive tasks. Overall, our results are consistent with a model in which mPFC contributes to the selection of goal-directed actions by transforming sensory inputs into specific behavioral outputs through distributed population-level computations. Ehret et al. uncover neural activity patterns in the prefrontal cortex that link sensory stimuli to learned behavioral responses by isolating interpretable activity patterns that are shared among mice performing the same task.\",\"PeriodicalId\":19076,\"journal\":{\"name\":\"Nature neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":21.2000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41593-024-01704-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41593-024-01704-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-024-01704-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

内侧前额叶皮层(mPFC)被认为是连接感官输入和行为输出的纽带,从而介导学习行为的执行。然而,这种联系是如何实现的仍不清楚。为了测量感觉刺激和学习行为的前额叶神经相关性,我们在小鼠主动回避新的音调信号范式中进行了群体钙成像。我们开发了一种基于降维和解码的分析方法,使我们能够识别可解释的与任务相关的群体活动模式。虽然很大一部分音调诱发的活动对行为的执行没有参考价值,但我们发现了一种活动模式,它可以预测音调诱发的回避动作,而类似运动运动学的自发动作则不会出现这种活动模式。此外,这种回避特异性活动在两个连续任务中学会的不同回避动作之间存在差异。总体而言,我们的研究结果与 mPFC 通过分布式群体级计算将感觉输入转化为特定行为输出,从而帮助选择目标定向动作的模型是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Population-level coding of avoidance learning in medial prefrontal cortex

Population-level coding of avoidance learning in medial prefrontal cortex

Population-level coding of avoidance learning in medial prefrontal cortex
The medial prefrontal cortex (mPFC) has been proposed to link sensory inputs and behavioral outputs to mediate the execution of learned behaviors. However, how such a link is implemented has remained unclear. To measure prefrontal neural correlates of sensory stimuli and learned behaviors, we performed population calcium imaging during a new tone-signaled active avoidance paradigm in mice. We developed an analysis approach based on dimensionality reduction and decoding that allowed us to identify interpretable task-related population activity patterns. While a large fraction of tone-evoked activity was not informative about behavior execution, we identified an activity pattern that was predictive of tone-induced avoidance actions and did not occur for spontaneous actions with similar motion kinematics. Moreover, this avoidance-specific activity differed between distinct avoidance actions learned in two consecutive tasks. Overall, our results are consistent with a model in which mPFC contributes to the selection of goal-directed actions by transforming sensory inputs into specific behavioral outputs through distributed population-level computations. Ehret et al. uncover neural activity patterns in the prefrontal cortex that link sensory stimuli to learned behavioral responses by isolating interpretable activity patterns that are shared among mice performing the same task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信