{"title":"Haspin 在小鼠胚胎干细胞中介导极光 B 下游的 H3.3S31 磷酸化。","authors":"Yuanyuan Li, Meixian Wu, Yang Liu, Lihua Sun, Peiqiang Mu, Binbin Ma, Jing Xie","doi":"10.1002/pro.5126","DOIUrl":null,"url":null,"abstract":"<p><p>Histone phosphorylation is instrumental in regulating diverse cellular processes across eukaryotes. Unraveling the kinases that target specific histone sites is key to deciphering the underlying mechanisms. Among the various sites on histone tails that can undergo phosphorylation, the kinase responsible for H3.3S31 phosphorylation remained elusive. Since both H3.3S31ph and H3T3ph occur specifically during mitosis, and Haspin is the known kinase for H3T3 phosphorylation, we investigated its potential role in H3.3S31 phosphorylation. We employed CRISPR/Cas9, RNA interference, and specific small molecule inhibitors to eliminate Haspin function in various cell types. Our data consistently revealed a link between Haspin and H3.3S31ph. Furthermore, in vitro kinase assays provided evidence supporting Haspin's contribution to H3.3S31ph. Loss- and gain-of-function experiments targeting Haspin and Aurora B further suggested a hierarchical relationship. Haspin acts as a downstream kinase of Aurora B, specifically orchestrating H3.3S31 phosphorylation in mESCs. This study unveils a novel role for Haspin as a kinase in regulating H3.3S31 phosphorylation during mitosis. This discovery holds promise for expanding our understanding of the functional significance of Haspin and H3.3S31ph in mammals.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 8","pages":"e5126"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284449/pdf/","citationCount":"0","resultStr":"{\"title\":\"Haspin mediates H3.3S31 phosphorylation downstream of Aurora B in mouse embryonic stem cells.\",\"authors\":\"Yuanyuan Li, Meixian Wu, Yang Liu, Lihua Sun, Peiqiang Mu, Binbin Ma, Jing Xie\",\"doi\":\"10.1002/pro.5126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histone phosphorylation is instrumental in regulating diverse cellular processes across eukaryotes. Unraveling the kinases that target specific histone sites is key to deciphering the underlying mechanisms. Among the various sites on histone tails that can undergo phosphorylation, the kinase responsible for H3.3S31 phosphorylation remained elusive. Since both H3.3S31ph and H3T3ph occur specifically during mitosis, and Haspin is the known kinase for H3T3 phosphorylation, we investigated its potential role in H3.3S31 phosphorylation. We employed CRISPR/Cas9, RNA interference, and specific small molecule inhibitors to eliminate Haspin function in various cell types. Our data consistently revealed a link between Haspin and H3.3S31ph. Furthermore, in vitro kinase assays provided evidence supporting Haspin's contribution to H3.3S31ph. Loss- and gain-of-function experiments targeting Haspin and Aurora B further suggested a hierarchical relationship. Haspin acts as a downstream kinase of Aurora B, specifically orchestrating H3.3S31 phosphorylation in mESCs. This study unveils a novel role for Haspin as a kinase in regulating H3.3S31 phosphorylation during mitosis. This discovery holds promise for expanding our understanding of the functional significance of Haspin and H3.3S31ph in mammals.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"33 8\",\"pages\":\"e5126\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284449/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.5126\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5126","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Haspin mediates H3.3S31 phosphorylation downstream of Aurora B in mouse embryonic stem cells.
Histone phosphorylation is instrumental in regulating diverse cellular processes across eukaryotes. Unraveling the kinases that target specific histone sites is key to deciphering the underlying mechanisms. Among the various sites on histone tails that can undergo phosphorylation, the kinase responsible for H3.3S31 phosphorylation remained elusive. Since both H3.3S31ph and H3T3ph occur specifically during mitosis, and Haspin is the known kinase for H3T3 phosphorylation, we investigated its potential role in H3.3S31 phosphorylation. We employed CRISPR/Cas9, RNA interference, and specific small molecule inhibitors to eliminate Haspin function in various cell types. Our data consistently revealed a link between Haspin and H3.3S31ph. Furthermore, in vitro kinase assays provided evidence supporting Haspin's contribution to H3.3S31ph. Loss- and gain-of-function experiments targeting Haspin and Aurora B further suggested a hierarchical relationship. Haspin acts as a downstream kinase of Aurora B, specifically orchestrating H3.3S31 phosphorylation in mESCs. This study unveils a novel role for Haspin as a kinase in regulating H3.3S31 phosphorylation during mitosis. This discovery holds promise for expanding our understanding of the functional significance of Haspin and H3.3S31ph in mammals.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).