Zhiguang Qiu, Shuhang He, Chun-Ang Lian, Xuejiao Qiao, Qing Zhang, Ciqin Yao, Rong Mu, Li Wang, Xiao-Ai Cao, Yan Yan, Ke Yu
{"title":"大规模勘探揭示了稀有类群对碱性湖泊沉积物中微生物组合的关键作用。","authors":"Zhiguang Qiu, Shuhang He, Chun-Ang Lian, Xuejiao Qiao, Qing Zhang, Ciqin Yao, Rong Mu, Li Wang, Xiao-Ai Cao, Yan Yan, Ke Yu","doi":"10.1038/s41522-024-00537-1","DOIUrl":null,"url":null,"abstract":"<p><p>Alkaline lakes are extreme environments inhabited by diverse microbial extremophiles. However, large-scale distribution patterns, environmental adaptations, community assembly, and evolutionary dynamics of microbial communities remain largely underexplored. This study investigated the characteristics of microbial communities on rare and abundant taxa in alkaline lake sediments in west and northwest China. We observed that abundant taxa varied significantly with geographical distance, while rare taxa remained unaffected by regional differences. The assembly process of abundant taxa was influenced by dispersal limitation, whilst rare taxa were predominantly driven by heterogeneous selection. Network analysis indicated that rare taxa as core species for community interactions and community stability. Rare taxa exhibited higher speciation and transition rate than abundant taxa, serving as a genetic reservoir and potential candidates to become abundance taxa, highlighting their crucial role in maintaining microbial diversity. These insights underscore the significant influence of rare taxa on ecosystem biodiversity and stability in alkaline lakes.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"62"},"PeriodicalIF":7.8000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284227/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large scale exploration reveals rare taxa crucially shape microbial assembly in alkaline lake sediments.\",\"authors\":\"Zhiguang Qiu, Shuhang He, Chun-Ang Lian, Xuejiao Qiao, Qing Zhang, Ciqin Yao, Rong Mu, Li Wang, Xiao-Ai Cao, Yan Yan, Ke Yu\",\"doi\":\"10.1038/s41522-024-00537-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alkaline lakes are extreme environments inhabited by diverse microbial extremophiles. However, large-scale distribution patterns, environmental adaptations, community assembly, and evolutionary dynamics of microbial communities remain largely underexplored. This study investigated the characteristics of microbial communities on rare and abundant taxa in alkaline lake sediments in west and northwest China. We observed that abundant taxa varied significantly with geographical distance, while rare taxa remained unaffected by regional differences. The assembly process of abundant taxa was influenced by dispersal limitation, whilst rare taxa were predominantly driven by heterogeneous selection. Network analysis indicated that rare taxa as core species for community interactions and community stability. Rare taxa exhibited higher speciation and transition rate than abundant taxa, serving as a genetic reservoir and potential candidates to become abundance taxa, highlighting their crucial role in maintaining microbial diversity. These insights underscore the significant influence of rare taxa on ecosystem biodiversity and stability in alkaline lakes.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"10 1\",\"pages\":\"62\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284227/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-024-00537-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00537-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Large scale exploration reveals rare taxa crucially shape microbial assembly in alkaline lake sediments.
Alkaline lakes are extreme environments inhabited by diverse microbial extremophiles. However, large-scale distribution patterns, environmental adaptations, community assembly, and evolutionary dynamics of microbial communities remain largely underexplored. This study investigated the characteristics of microbial communities on rare and abundant taxa in alkaline lake sediments in west and northwest China. We observed that abundant taxa varied significantly with geographical distance, while rare taxa remained unaffected by regional differences. The assembly process of abundant taxa was influenced by dispersal limitation, whilst rare taxa were predominantly driven by heterogeneous selection. Network analysis indicated that rare taxa as core species for community interactions and community stability. Rare taxa exhibited higher speciation and transition rate than abundant taxa, serving as a genetic reservoir and potential candidates to become abundance taxa, highlighting their crucial role in maintaining microbial diversity. These insights underscore the significant influence of rare taxa on ecosystem biodiversity and stability in alkaline lakes.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.