Jiaqi Chen, Yingrui Yao, Xiaoran Mao, Yuzhou Chen, Feng Ni
{"title":"基于原药的肝脏靶向给药:被动和主动方法","authors":"Jiaqi Chen, Yingrui Yao, Xiaoran Mao, Yuzhou Chen, Feng Ni","doi":"10.1080/1061186X.2024.2386416","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The liver, a central organ in human metabolism, is often the primary target for drugs. However, conditions such as viral hepatitis, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC) present substantial health challenges worldwide. Existing treatments, which suffer from the non-specific distribution of drugs, frequently fail to achieve desired efficacy and safety, risking unnecessary liver harm and systemic side effects.</p><p><strong>Purpose: </strong>The aim of this review is to synthesise the latest progress in the design of liver-targeted prodrugs, with a focus on passive and active targeting strategies, providing new insights into the development of liver-targeted therapeutic approaches.</p><p><strong>Methods: </strong>This study conducted an extensive literature search through databases like Google Scholar, PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI), systematically collecting and selecting recent research on liver-targeted prodrugs. The focus was on targeting mechanisms, including the Enhanced Permeability and Retention (EPR) effect, the unique microenvironment of liver cancer, and active targeting through specific transporters and receptors.</p><p><strong>Results: </strong>Active targeting strategies achieve precise drug delivery by binding specific ligands to liver surface receptors. Passive targeting takes advantage of the EPR effect and tumour characteristics to enrich drugs in liver tumours. The review details successful cases of using small molecule ligands, peptides, antibodies and nanoparticles as drug carriers.</p><p><strong>Conclusion: </strong>Liver-targeted prodrug strategies show great potential in enhancing the efficacy of drug treatment and reducing side effects for liver diseases. Future research should balance the advantages and limitations of both targeting strategies, focusing on optimising drug design and targeting efficiency, especially for clinical application. In-depth research on liver-specific receptors and the development of innovative targeting molecules are crucial for advancing the field of liver-targeted prodrugs.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1155-1168"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liver-targeted delivery based on prodrug: passive and active approaches.\",\"authors\":\"Jiaqi Chen, Yingrui Yao, Xiaoran Mao, Yuzhou Chen, Feng Ni\",\"doi\":\"10.1080/1061186X.2024.2386416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The liver, a central organ in human metabolism, is often the primary target for drugs. However, conditions such as viral hepatitis, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC) present substantial health challenges worldwide. Existing treatments, which suffer from the non-specific distribution of drugs, frequently fail to achieve desired efficacy and safety, risking unnecessary liver harm and systemic side effects.</p><p><strong>Purpose: </strong>The aim of this review is to synthesise the latest progress in the design of liver-targeted prodrugs, with a focus on passive and active targeting strategies, providing new insights into the development of liver-targeted therapeutic approaches.</p><p><strong>Methods: </strong>This study conducted an extensive literature search through databases like Google Scholar, PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI), systematically collecting and selecting recent research on liver-targeted prodrugs. The focus was on targeting mechanisms, including the Enhanced Permeability and Retention (EPR) effect, the unique microenvironment of liver cancer, and active targeting through specific transporters and receptors.</p><p><strong>Results: </strong>Active targeting strategies achieve precise drug delivery by binding specific ligands to liver surface receptors. Passive targeting takes advantage of the EPR effect and tumour characteristics to enrich drugs in liver tumours. The review details successful cases of using small molecule ligands, peptides, antibodies and nanoparticles as drug carriers.</p><p><strong>Conclusion: </strong>Liver-targeted prodrug strategies show great potential in enhancing the efficacy of drug treatment and reducing side effects for liver diseases. Future research should balance the advantages and limitations of both targeting strategies, focusing on optimising drug design and targeting efficiency, especially for clinical application. In-depth research on liver-specific receptors and the development of innovative targeting molecules are crucial for advancing the field of liver-targeted prodrugs.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":\" \",\"pages\":\"1155-1168\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2024.2386416\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2024.2386416","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
背景:肝脏是人体新陈代谢的核心器官,通常是药物的主要靶点。然而,病毒性肝炎、肝硬化、非酒精性脂肪肝(NAFLD)和肝细胞癌(HCC)等疾病给全球健康带来了巨大挑战。目的:本综述旨在总结肝脏靶向原药设计的最新进展,重点关注被动和主动靶向策略,为肝脏靶向治疗方法的开发提供新见解:本研究通过 Google Scholar、PubMed、Web of Science 和中国国家知识基础设施(CNKI)等数据库进行了广泛的文献检索,系统地收集和筛选了近期有关肝脏靶向原药的研究。研究重点是靶向机制,包括增强渗透性和滞留(EPR)效应、肝癌独特的微环境以及通过特定转运体和受体的主动靶向:主动靶向策略通过将特异性配体与肝脏表面受体结合实现精确给药。被动靶向利用 EPR 效应和肿瘤特征在肝脏肿瘤中富集药物。综述详细介绍了使用小分子配体、多肽、抗体和纳米颗粒作为药物载体的成功案例:结论:肝脏靶向原药策略在提高药物治疗效果和减少肝脏疾病副作用方面显示出巨大潜力。未来的研究应平衡两种靶向策略的优势和局限性,重点优化药物设计和靶向效率,尤其是在临床应用方面。对肝脏特异性受体的深入研究和创新性靶向分子的开发对于推动肝脏靶向原药领域的发展至关重要。
Liver-targeted delivery based on prodrug: passive and active approaches.
Background: The liver, a central organ in human metabolism, is often the primary target for drugs. However, conditions such as viral hepatitis, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC) present substantial health challenges worldwide. Existing treatments, which suffer from the non-specific distribution of drugs, frequently fail to achieve desired efficacy and safety, risking unnecessary liver harm and systemic side effects.
Purpose: The aim of this review is to synthesise the latest progress in the design of liver-targeted prodrugs, with a focus on passive and active targeting strategies, providing new insights into the development of liver-targeted therapeutic approaches.
Methods: This study conducted an extensive literature search through databases like Google Scholar, PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI), systematically collecting and selecting recent research on liver-targeted prodrugs. The focus was on targeting mechanisms, including the Enhanced Permeability and Retention (EPR) effect, the unique microenvironment of liver cancer, and active targeting through specific transporters and receptors.
Results: Active targeting strategies achieve precise drug delivery by binding specific ligands to liver surface receptors. Passive targeting takes advantage of the EPR effect and tumour characteristics to enrich drugs in liver tumours. The review details successful cases of using small molecule ligands, peptides, antibodies and nanoparticles as drug carriers.
Conclusion: Liver-targeted prodrug strategies show great potential in enhancing the efficacy of drug treatment and reducing side effects for liver diseases. Future research should balance the advantages and limitations of both targeting strategies, focusing on optimising drug design and targeting efficiency, especially for clinical application. In-depth research on liver-specific receptors and the development of innovative targeting molecules are crucial for advancing the field of liver-targeted prodrugs.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.