Tanushree Moharana, Aliva Patnaik, C. S. K. Mishra, Binayak Prasad Behera, Rashmi Rekha Samal
{"title":"农业土壤中的高密度聚乙烯微塑料:对微生物、酶和碳氮比的影响。","authors":"Tanushree Moharana, Aliva Patnaik, C. S. K. Mishra, Binayak Prasad Behera, Rashmi Rekha Samal","doi":"10.1002/jeq2.20610","DOIUrl":null,"url":null,"abstract":"<p>Microplastics (MPs), recognized as emerging pollutants, pose a significant threat to diverse organisms and have adverse effects on agricultural soil. High-density polyethylene (HDPE) holds a prominent position among prevalent forms of MPs. In the current investigations, the impact of HDPE was assessed at four different concentrations (0.25%, 0.5%, 0.75%, and 1.0%) on agricultural soil, microbial population, exoenzymes activities including amylase, cellulase, and invertase, and alteration in carbon-to-nitrogen (C/N) ratio. Both bacterial and fungal populations exhibited a non-concentration-dependent response to different concentrations of HDPE over time. In this study, we refer to the concentrations of 0.25%, 0.5%, 0.75%, and 1.0% as HT1, HT2, HT3, and HT4, respectively. Initial MP application significantly reduced bacterial colony counts for HT1, HT2, and HT4, while HT3 showed no significant change. On the 60th day, HT1 and HT3 exhibited a higher bacterial colony count compared to the control. On the other hand, fungal populations increased to maximum on day 1 but displayed no distinct time-dependent trend from days 15 to 60. Furthermore, enzyme activities decreased with increasing concentrations of MPs over an extended period. Molecular docking studies suggest that HDPE can hinder enzyme activity by forming hydrogen bonds with enzymes. The C/N ratio was found to be significantly higher in MP-treated soils on the 60th day relative to control, suggesting relatively slower degradation of carbon compounds in the MP-treated soils.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 5","pages":"711-726"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-density polyethylene microplastics in agricultural soil: Impact on microbes, enzymes, and carbon-nitrogen ratio\",\"authors\":\"Tanushree Moharana, Aliva Patnaik, C. S. K. Mishra, Binayak Prasad Behera, Rashmi Rekha Samal\",\"doi\":\"10.1002/jeq2.20610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microplastics (MPs), recognized as emerging pollutants, pose a significant threat to diverse organisms and have adverse effects on agricultural soil. High-density polyethylene (HDPE) holds a prominent position among prevalent forms of MPs. In the current investigations, the impact of HDPE was assessed at four different concentrations (0.25%, 0.5%, 0.75%, and 1.0%) on agricultural soil, microbial population, exoenzymes activities including amylase, cellulase, and invertase, and alteration in carbon-to-nitrogen (C/N) ratio. Both bacterial and fungal populations exhibited a non-concentration-dependent response to different concentrations of HDPE over time. In this study, we refer to the concentrations of 0.25%, 0.5%, 0.75%, and 1.0% as HT1, HT2, HT3, and HT4, respectively. Initial MP application significantly reduced bacterial colony counts for HT1, HT2, and HT4, while HT3 showed no significant change. On the 60th day, HT1 and HT3 exhibited a higher bacterial colony count compared to the control. On the other hand, fungal populations increased to maximum on day 1 but displayed no distinct time-dependent trend from days 15 to 60. Furthermore, enzyme activities decreased with increasing concentrations of MPs over an extended period. Molecular docking studies suggest that HDPE can hinder enzyme activity by forming hydrogen bonds with enzymes. The C/N ratio was found to be significantly higher in MP-treated soils on the 60th day relative to control, suggesting relatively slower degradation of carbon compounds in the MP-treated soils.</p>\",\"PeriodicalId\":15732,\"journal\":{\"name\":\"Journal of environmental quality\",\"volume\":\"53 5\",\"pages\":\"711-726\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental quality\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jeq2.20610\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jeq2.20610","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
High-density polyethylene microplastics in agricultural soil: Impact on microbes, enzymes, and carbon-nitrogen ratio
Microplastics (MPs), recognized as emerging pollutants, pose a significant threat to diverse organisms and have adverse effects on agricultural soil. High-density polyethylene (HDPE) holds a prominent position among prevalent forms of MPs. In the current investigations, the impact of HDPE was assessed at four different concentrations (0.25%, 0.5%, 0.75%, and 1.0%) on agricultural soil, microbial population, exoenzymes activities including amylase, cellulase, and invertase, and alteration in carbon-to-nitrogen (C/N) ratio. Both bacterial and fungal populations exhibited a non-concentration-dependent response to different concentrations of HDPE over time. In this study, we refer to the concentrations of 0.25%, 0.5%, 0.75%, and 1.0% as HT1, HT2, HT3, and HT4, respectively. Initial MP application significantly reduced bacterial colony counts for HT1, HT2, and HT4, while HT3 showed no significant change. On the 60th day, HT1 and HT3 exhibited a higher bacterial colony count compared to the control. On the other hand, fungal populations increased to maximum on day 1 but displayed no distinct time-dependent trend from days 15 to 60. Furthermore, enzyme activities decreased with increasing concentrations of MPs over an extended period. Molecular docking studies suggest that HDPE can hinder enzyme activity by forming hydrogen bonds with enzymes. The C/N ratio was found to be significantly higher in MP-treated soils on the 60th day relative to control, suggesting relatively slower degradation of carbon compounds in the MP-treated soils.
期刊介绍:
Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring.
Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.