{"title":"基于高通量测序技术的切口疝转录组分析。","authors":"Yiming Lin, Hekai Shi, Rongduo Yang, Shaochun Li, Jianxiong Tang, Shaojie Li","doi":"10.1007/s10029-024-03116-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Incisional hernia is a common postoperative complication; however, few transcriptomic studies have been conducted on it. In this study, we used second-generation high-throughput sequencing to explore the pathogenesis and potential therapeutic targets of incisional hernias.</p><p><strong>Methods: </strong>Superficial fasciae were collected from 15 patients without hernia and 21 patients with an incisional hernia. High-throughput sequencing of the fascia was performed to generate an expression matrix. We analyzed the matrix to identify differentially expressed genes (DEGs) and performed gene ontology and enrichment analyses of these DEGs. Additionally, an external dataset was utilized to identify key DEGs.</p><p><strong>Results: </strong>We identified 1,823 DEGs closely associated with extracellular matrix (ECM) imbalance, bacterial inflammatory response, and fibrillar collagen trimerization. TNNT3, CMAY5, ATP1B4, ASB5, CILP, SIX4, FBN1 and FNDC5 were identified as key DEGs at the intersection of the two expression matrices. Moreover, non-alcoholic fatty liver disease-related, TNF, and IL-17 signaling pathways were identified as key enrichment pathways.</p><p><strong>Conclusions: </strong>We identified eight key DEGs and three pathways associated with incisional hernias. Our findings offer new insights into the pathogenesis of incisional hernias and highlight potential targets for their prevention and treatment.</p>","PeriodicalId":13168,"journal":{"name":"Hernia","volume":" ","pages":"1899-1907"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transcriptomic analysis of incisional hernia based on high-throughput sequencing technology.\",\"authors\":\"Yiming Lin, Hekai Shi, Rongduo Yang, Shaochun Li, Jianxiong Tang, Shaojie Li\",\"doi\":\"10.1007/s10029-024-03116-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Incisional hernia is a common postoperative complication; however, few transcriptomic studies have been conducted on it. In this study, we used second-generation high-throughput sequencing to explore the pathogenesis and potential therapeutic targets of incisional hernias.</p><p><strong>Methods: </strong>Superficial fasciae were collected from 15 patients without hernia and 21 patients with an incisional hernia. High-throughput sequencing of the fascia was performed to generate an expression matrix. We analyzed the matrix to identify differentially expressed genes (DEGs) and performed gene ontology and enrichment analyses of these DEGs. Additionally, an external dataset was utilized to identify key DEGs.</p><p><strong>Results: </strong>We identified 1,823 DEGs closely associated with extracellular matrix (ECM) imbalance, bacterial inflammatory response, and fibrillar collagen trimerization. TNNT3, CMAY5, ATP1B4, ASB5, CILP, SIX4, FBN1 and FNDC5 were identified as key DEGs at the intersection of the two expression matrices. Moreover, non-alcoholic fatty liver disease-related, TNF, and IL-17 signaling pathways were identified as key enrichment pathways.</p><p><strong>Conclusions: </strong>We identified eight key DEGs and three pathways associated with incisional hernias. Our findings offer new insights into the pathogenesis of incisional hernias and highlight potential targets for their prevention and treatment.</p>\",\"PeriodicalId\":13168,\"journal\":{\"name\":\"Hernia\",\"volume\":\" \",\"pages\":\"1899-1907\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hernia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10029-024-03116-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hernia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10029-024-03116-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
A transcriptomic analysis of incisional hernia based on high-throughput sequencing technology.
Purpose: Incisional hernia is a common postoperative complication; however, few transcriptomic studies have been conducted on it. In this study, we used second-generation high-throughput sequencing to explore the pathogenesis and potential therapeutic targets of incisional hernias.
Methods: Superficial fasciae were collected from 15 patients without hernia and 21 patients with an incisional hernia. High-throughput sequencing of the fascia was performed to generate an expression matrix. We analyzed the matrix to identify differentially expressed genes (DEGs) and performed gene ontology and enrichment analyses of these DEGs. Additionally, an external dataset was utilized to identify key DEGs.
Results: We identified 1,823 DEGs closely associated with extracellular matrix (ECM) imbalance, bacterial inflammatory response, and fibrillar collagen trimerization. TNNT3, CMAY5, ATP1B4, ASB5, CILP, SIX4, FBN1 and FNDC5 were identified as key DEGs at the intersection of the two expression matrices. Moreover, non-alcoholic fatty liver disease-related, TNF, and IL-17 signaling pathways were identified as key enrichment pathways.
Conclusions: We identified eight key DEGs and three pathways associated with incisional hernias. Our findings offer new insights into the pathogenesis of incisional hernias and highlight potential targets for their prevention and treatment.
期刊介绍:
Hernia was founded in 1997 by Jean P. Chevrel with the purpose of promoting clinical studies and basic research as they apply to groin hernias and the abdominal wall . Since that time, a true revolution in the field of hernia studies has transformed the field from a ”simple” disease to one that is very specialized. While the majority of surgeries for primary inguinal and abdominal wall hernia are performed in hospitals worldwide, complex situations such as multi recurrences, complications, abdominal wall reconstructions and others are being studied and treated in specialist centers. As a result, major institutions and societies are creating specific parameters and criteria to better address the complexities of hernia surgery.
Hernia is a journal written by surgeons who have made abdominal wall surgery their specific field of interest, but we will consider publishing content from any surgeon who wishes to improve the science of this field. The Journal aims to ensure that hernia surgery is safer and easier for surgeons as well as patients, and provides a forum to all surgeons in the exchange of new ideas, results, and important research that is the basis of professional activity.