{"title":"对格列氟嗪、卡那格列嗪、达帕格列嗪和恩法格列嗪二聚体杂质的诱变性和遗传毒性进行硅学 QSAR 预测,并通过 Ames 和微核试验进行体外评估。","authors":"Rajesh Rane, Bharat Satpute, Dileep Kumar, Mugdha Suryawanshi, Akshay Ganesh Prabhune, Bapu Gawade, Anand Mahajan, Atmaram Pawar, Sachin Sakat","doi":"10.1080/01480545.2024.2378768","DOIUrl":null,"url":null,"abstract":"<p><p>Canagliflozin, Dapagliflozin, and Empagliflozin, glucagon-like peptide-1 receptor agonists, are indicated for managing type II diabetes. Although the genotoxicity profiles of these drugs are well-explored, limited information exists regarding the genotoxic potential of their impurities. In this investigation, the dimer impurities of Canagliflozin, Dapagliflozin, and Empagliflozin underwent both <i>in silico</i> and <i>in vitro</i> assessments for mutagenic potential. Tester strains of <i>Salmonella typhimurium</i> and <i>Escherichia coli</i> were subjected to the Ames test, utilizing concentrations of up to 1 µg per plate, with and without the presence of metabolic activation. Evaluation of micronucleus induction in TK6 cells was conducted through a micronucleus test, exploring concentrations up to 500 µg/mL, with or without the presence of exogenous metabolic activation. Under the specific test conditions, the dimer impurities of Canagliflozin, Dapagliflozin, and Empagliflozin showed no evidence of mutagenicity or clastrogenicity, establishing their <i>in vitro</i> classification as nonmutagenic. These findings align with negative <i>in silico</i> predictions from quantitative structure-activity relationship (QSAR) analyses for mutagenicity and genotoxicity of the dimer impurities. Collectively, these studies contribute clinically relevant safety information by confirming that the dimer impurities of Canagliflozin, Dapagliflozin, and Empagliflozin are nonmutagenic and nongenotoxic, emphasizing the consistency between <i>in silico</i> and <i>in vitro</i> data.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"416-425"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutagenic and genotoxic <i>in silico</i> QSAR prediction of dimer impurity of gliflozins; canagliflozin, dapaglifozin, and emphagliflozin and <i>in vitro</i> evaluation by Ames and micronucleus test.\",\"authors\":\"Rajesh Rane, Bharat Satpute, Dileep Kumar, Mugdha Suryawanshi, Akshay Ganesh Prabhune, Bapu Gawade, Anand Mahajan, Atmaram Pawar, Sachin Sakat\",\"doi\":\"10.1080/01480545.2024.2378768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Canagliflozin, Dapagliflozin, and Empagliflozin, glucagon-like peptide-1 receptor agonists, are indicated for managing type II diabetes. Although the genotoxicity profiles of these drugs are well-explored, limited information exists regarding the genotoxic potential of their impurities. In this investigation, the dimer impurities of Canagliflozin, Dapagliflozin, and Empagliflozin underwent both <i>in silico</i> and <i>in vitro</i> assessments for mutagenic potential. Tester strains of <i>Salmonella typhimurium</i> and <i>Escherichia coli</i> were subjected to the Ames test, utilizing concentrations of up to 1 µg per plate, with and without the presence of metabolic activation. Evaluation of micronucleus induction in TK6 cells was conducted through a micronucleus test, exploring concentrations up to 500 µg/mL, with or without the presence of exogenous metabolic activation. Under the specific test conditions, the dimer impurities of Canagliflozin, Dapagliflozin, and Empagliflozin showed no evidence of mutagenicity or clastrogenicity, establishing their <i>in vitro</i> classification as nonmutagenic. These findings align with negative <i>in silico</i> predictions from quantitative structure-activity relationship (QSAR) analyses for mutagenicity and genotoxicity of the dimer impurities. Collectively, these studies contribute clinically relevant safety information by confirming that the dimer impurities of Canagliflozin, Dapagliflozin, and Empagliflozin are nonmutagenic and nongenotoxic, emphasizing the consistency between <i>in silico</i> and <i>in vitro</i> data.</p>\",\"PeriodicalId\":11333,\"journal\":{\"name\":\"Drug and Chemical Toxicology\",\"volume\":\" \",\"pages\":\"416-425\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug and Chemical Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01480545.2024.2378768\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2024.2378768","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mutagenic and genotoxic in silico QSAR prediction of dimer impurity of gliflozins; canagliflozin, dapaglifozin, and emphagliflozin and in vitro evaluation by Ames and micronucleus test.
Canagliflozin, Dapagliflozin, and Empagliflozin, glucagon-like peptide-1 receptor agonists, are indicated for managing type II diabetes. Although the genotoxicity profiles of these drugs are well-explored, limited information exists regarding the genotoxic potential of their impurities. In this investigation, the dimer impurities of Canagliflozin, Dapagliflozin, and Empagliflozin underwent both in silico and in vitro assessments for mutagenic potential. Tester strains of Salmonella typhimurium and Escherichia coli were subjected to the Ames test, utilizing concentrations of up to 1 µg per plate, with and without the presence of metabolic activation. Evaluation of micronucleus induction in TK6 cells was conducted through a micronucleus test, exploring concentrations up to 500 µg/mL, with or without the presence of exogenous metabolic activation. Under the specific test conditions, the dimer impurities of Canagliflozin, Dapagliflozin, and Empagliflozin showed no evidence of mutagenicity or clastrogenicity, establishing their in vitro classification as nonmutagenic. These findings align with negative in silico predictions from quantitative structure-activity relationship (QSAR) analyses for mutagenicity and genotoxicity of the dimer impurities. Collectively, these studies contribute clinically relevant safety information by confirming that the dimer impurities of Canagliflozin, Dapagliflozin, and Empagliflozin are nonmutagenic and nongenotoxic, emphasizing the consistency between in silico and in vitro data.
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.