Maya W. Haaker, Vera Goossens, Nina A.N. Hoogland, Hidde van Doorne, Ziqiong Wang, Jeroen W.A. Jansen, Dora V. Kaloyanova, Chris H.A. van de Lest, Martin Houweling, A. Bas Vaandrager, J. Bernd Helms
{"title":"肝星状细胞的早期激活可诱导视黄醇酯的快速分解,同时维持卵磷脂的活性:视黄醇酰基转移酶(LRAT)的活性。","authors":"Maya W. Haaker, Vera Goossens, Nina A.N. Hoogland, Hidde van Doorne, Ziqiong Wang, Jeroen W.A. Jansen, Dora V. Kaloyanova, Chris H.A. van de Lest, Martin Houweling, A. Bas Vaandrager, J. Bernd Helms","doi":"10.1016/j.bbalip.2024.159540","DOIUrl":null,"url":null,"abstract":"<div><p>Lecithin:retinol acyltransferase (LRAT) is the main enzyme producing retinyl esters (REs) in quiescent hepatic stellate cells (HSCs). When cultured on stiff plastic culture plates, quiescent HSCs activate and lose their RE stores in a process similar to that in the liver following tissue damage, leading to fibrosis. Here we validated HSC cultures in soft gels to study RE metabolism in stable quiescent HSCs and investigated RE synthesis and breakdown in activating HSCs.</p><p>HSCs cultured in a soft gel maintained characteristics of quiescent HSCs, including the size, amount and composition of their characteristic large lipid droplets. Quiescent gel-cultured HSCs maintained high expression levels of <em>Lrat</em> and a RE storing phenotype with low levels of RE breakdown. Newly formed REs are highly enriched in retinyl palmitate (RP), similar to freshly isolated quiescent HSCs, which is associated with high LRAT activity. Comparison of these quiescent gel-cultured HSCs with activated plastic-cultured HSCs showed that although during early activation the total RE levels and RP-enrichment are reduced, levels of RE formation are maintained and mediated by LRAT. Loss of REs was caused by enhanced RE breakdown in activating HSCs. Upon prolonged culturing, activated HSCs have lost their LRAT activity and produce small amounts of REs by DGAT1. This study reveals unexpected dynamics in RE metabolism during early HSC activation, which might be important in liver disease as early stages are reversible. Soft gel cultures provide a promising model to study RE metabolism in quiescent HSCs, allowing detailed molecular investigations on the mechanisms for storage and release.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 7","pages":"Article 159540"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388198124000908/pdfft?md5=62a2e62b2ffedeed72c59c7bc898b487&pid=1-s2.0-S1388198124000908-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Early activation of hepatic stellate cells induces rapid initiation of retinyl ester breakdown while maintaining lecithin:retinol acyltransferase (LRAT) activity\",\"authors\":\"Maya W. Haaker, Vera Goossens, Nina A.N. Hoogland, Hidde van Doorne, Ziqiong Wang, Jeroen W.A. Jansen, Dora V. Kaloyanova, Chris H.A. van de Lest, Martin Houweling, A. Bas Vaandrager, J. Bernd Helms\",\"doi\":\"10.1016/j.bbalip.2024.159540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lecithin:retinol acyltransferase (LRAT) is the main enzyme producing retinyl esters (REs) in quiescent hepatic stellate cells (HSCs). When cultured on stiff plastic culture plates, quiescent HSCs activate and lose their RE stores in a process similar to that in the liver following tissue damage, leading to fibrosis. Here we validated HSC cultures in soft gels to study RE metabolism in stable quiescent HSCs and investigated RE synthesis and breakdown in activating HSCs.</p><p>HSCs cultured in a soft gel maintained characteristics of quiescent HSCs, including the size, amount and composition of their characteristic large lipid droplets. Quiescent gel-cultured HSCs maintained high expression levels of <em>Lrat</em> and a RE storing phenotype with low levels of RE breakdown. Newly formed REs are highly enriched in retinyl palmitate (RP), similar to freshly isolated quiescent HSCs, which is associated with high LRAT activity. Comparison of these quiescent gel-cultured HSCs with activated plastic-cultured HSCs showed that although during early activation the total RE levels and RP-enrichment are reduced, levels of RE formation are maintained and mediated by LRAT. Loss of REs was caused by enhanced RE breakdown in activating HSCs. Upon prolonged culturing, activated HSCs have lost their LRAT activity and produce small amounts of REs by DGAT1. This study reveals unexpected dynamics in RE metabolism during early HSC activation, which might be important in liver disease as early stages are reversible. Soft gel cultures provide a promising model to study RE metabolism in quiescent HSCs, allowing detailed molecular investigations on the mechanisms for storage and release.</p></div>\",\"PeriodicalId\":8815,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"volume\":\"1869 7\",\"pages\":\"Article 159540\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388198124000908/pdfft?md5=62a2e62b2ffedeed72c59c7bc898b487&pid=1-s2.0-S1388198124000908-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388198124000908\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198124000908","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
卵磷脂:视黄醇酰基转移酶(LRAT)是静止肝星状细胞(HSCs)产生视黄醇酯(REs)的主要酶。在坚硬的塑料培养板上培养时,静止的造血干细胞会激活并失去其储存的视黄醇酯,这一过程与肝脏组织受损后导致纤维化的过程类似。在这里,我们验证了在软凝胶中培养造血干细胞,以研究稳定静止造血干细胞的 RE 代谢,并研究活化造血干细胞的 RE 合成和分解。在软凝胶中培养的造血干细胞保持了静止造血干细胞的特征,包括其特征性大脂滴的大小、数量和组成。静止凝胶培养的造血干细胞保持了 Lrat 的高表达水平和 RE 储存表型,RE 的分解水平较低。新形成的 RE 高度富含棕榈酸视黄醇酯(RP),这与新鲜分离的静止造血干细胞相似,而这与 LRAT 的高活性有关。将这些静止的凝胶培养造血干细胞与活化的塑料培养造血干细胞进行比较后发现,虽然在早期活化过程中RE的总水平和RP的富集程度降低了,但RE的形成水平保持不变,并由LRAT介导。活化的造血干细胞中 RE 的分解作用增强,从而导致 RE 的丧失。长期培养后,活化的造血干细胞失去了 LRAT 活性,并通过 DGAT1 产生少量 RE。这项研究揭示了早期造血干细胞活化过程中RE代谢的意外动态,由于早期阶段是可逆的,这可能对肝病有重要意义。软凝胶培养为研究静止造血干细胞的RE代谢提供了一个很有前景的模型,可以对储存和释放机制进行详细的分子研究。
Early activation of hepatic stellate cells induces rapid initiation of retinyl ester breakdown while maintaining lecithin:retinol acyltransferase (LRAT) activity
Lecithin:retinol acyltransferase (LRAT) is the main enzyme producing retinyl esters (REs) in quiescent hepatic stellate cells (HSCs). When cultured on stiff plastic culture plates, quiescent HSCs activate and lose their RE stores in a process similar to that in the liver following tissue damage, leading to fibrosis. Here we validated HSC cultures in soft gels to study RE metabolism in stable quiescent HSCs and investigated RE synthesis and breakdown in activating HSCs.
HSCs cultured in a soft gel maintained characteristics of quiescent HSCs, including the size, amount and composition of their characteristic large lipid droplets. Quiescent gel-cultured HSCs maintained high expression levels of Lrat and a RE storing phenotype with low levels of RE breakdown. Newly formed REs are highly enriched in retinyl palmitate (RP), similar to freshly isolated quiescent HSCs, which is associated with high LRAT activity. Comparison of these quiescent gel-cultured HSCs with activated plastic-cultured HSCs showed that although during early activation the total RE levels and RP-enrichment are reduced, levels of RE formation are maintained and mediated by LRAT. Loss of REs was caused by enhanced RE breakdown in activating HSCs. Upon prolonged culturing, activated HSCs have lost their LRAT activity and produce small amounts of REs by DGAT1. This study reveals unexpected dynamics in RE metabolism during early HSC activation, which might be important in liver disease as early stages are reversible. Soft gel cultures provide a promising model to study RE metabolism in quiescent HSCs, allowing detailed molecular investigations on the mechanisms for storage and release.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.