{"title":"使用聚酰胺膜从碱性甘氨酸溶液中回收甘氨酸镍的纳滤应用:技术说明","authors":"","doi":"10.1016/j.hydromet.2024.106368","DOIUrl":null,"url":null,"abstract":"<div><p>Glycine has been intensively investigated as a “green” lixiviant for precious and base metals. Alkaline glycine solutions to extract Ni from sulfide resources has shown promising results. However, a considerable amount of Ni will be lost in the wash solutions when leaching residues are washed during solid-liquid separation of the leachates from their respective leach residues. In this context, this study explored Ni recovery from alkaline glycine-based wash solutions using a polyamide nanofiltration membrane. In the tests using synthetic single and multi-metal solutions, the membrane achieved >95% rejection of Ni in the selected ranges of glycine/Ni molar ratio (up to 5), pressure (15–30 bar), initial nickel concentration (0.5–1.5 g/L), sodium sulfate background concentration (∼30 g/L) and under the use of different pH modifiers (aqueous ammonia and caustic soda). When using a real solution, the concentrations of Ni and other major elements (Cu, S, Co, Mg, Zn) in the final retentate increased by about 5 times at 80 wt% permeate recovery, leaving <3 mg/L major elements in permeate. The permeate stream could be recycled in the washing stage, and the retentate stream could be combined with the pregnant leach solution (PLS) for metals recovery. The investigation demonstrates some of the technical optionality for nickel recovery from filter wash solutions utilising nanofiltration within the context of alkaline glycine-based leach technology and preliminarily demonstrates where it can be used in the structure of flowsheets to recover valuable base metals and reagents for recycle. However, the increased membrane resistance causing a low permeate flux should be concerned due to the considerable dissolved salts, precipitation of gypsum and the increasing feed concentration over time.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304386X24001087/pdfft?md5=e0c782ba8f74a88f4b6d238afcb52273&pid=1-s2.0-S0304386X24001087-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of nanofiltration for the recovery of nickel glycinates from alkaline glycine-based solutions using polyamide membranes: A technical note\",\"authors\":\"\",\"doi\":\"10.1016/j.hydromet.2024.106368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glycine has been intensively investigated as a “green” lixiviant for precious and base metals. Alkaline glycine solutions to extract Ni from sulfide resources has shown promising results. However, a considerable amount of Ni will be lost in the wash solutions when leaching residues are washed during solid-liquid separation of the leachates from their respective leach residues. In this context, this study explored Ni recovery from alkaline glycine-based wash solutions using a polyamide nanofiltration membrane. In the tests using synthetic single and multi-metal solutions, the membrane achieved >95% rejection of Ni in the selected ranges of glycine/Ni molar ratio (up to 5), pressure (15–30 bar), initial nickel concentration (0.5–1.5 g/L), sodium sulfate background concentration (∼30 g/L) and under the use of different pH modifiers (aqueous ammonia and caustic soda). When using a real solution, the concentrations of Ni and other major elements (Cu, S, Co, Mg, Zn) in the final retentate increased by about 5 times at 80 wt% permeate recovery, leaving <3 mg/L major elements in permeate. The permeate stream could be recycled in the washing stage, and the retentate stream could be combined with the pregnant leach solution (PLS) for metals recovery. The investigation demonstrates some of the technical optionality for nickel recovery from filter wash solutions utilising nanofiltration within the context of alkaline glycine-based leach technology and preliminarily demonstrates where it can be used in the structure of flowsheets to recover valuable base metals and reagents for recycle. However, the increased membrane resistance causing a low permeate flux should be concerned due to the considerable dissolved salts, precipitation of gypsum and the increasing feed concentration over time.</p></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304386X24001087/pdfft?md5=e0c782ba8f74a88f4b6d238afcb52273&pid=1-s2.0-S0304386X24001087-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X24001087\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X24001087","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Application of nanofiltration for the recovery of nickel glycinates from alkaline glycine-based solutions using polyamide membranes: A technical note
Glycine has been intensively investigated as a “green” lixiviant for precious and base metals. Alkaline glycine solutions to extract Ni from sulfide resources has shown promising results. However, a considerable amount of Ni will be lost in the wash solutions when leaching residues are washed during solid-liquid separation of the leachates from their respective leach residues. In this context, this study explored Ni recovery from alkaline glycine-based wash solutions using a polyamide nanofiltration membrane. In the tests using synthetic single and multi-metal solutions, the membrane achieved >95% rejection of Ni in the selected ranges of glycine/Ni molar ratio (up to 5), pressure (15–30 bar), initial nickel concentration (0.5–1.5 g/L), sodium sulfate background concentration (∼30 g/L) and under the use of different pH modifiers (aqueous ammonia and caustic soda). When using a real solution, the concentrations of Ni and other major elements (Cu, S, Co, Mg, Zn) in the final retentate increased by about 5 times at 80 wt% permeate recovery, leaving <3 mg/L major elements in permeate. The permeate stream could be recycled in the washing stage, and the retentate stream could be combined with the pregnant leach solution (PLS) for metals recovery. The investigation demonstrates some of the technical optionality for nickel recovery from filter wash solutions utilising nanofiltration within the context of alkaline glycine-based leach technology and preliminarily demonstrates where it can be used in the structure of flowsheets to recover valuable base metals and reagents for recycle. However, the increased membrane resistance causing a low permeate flux should be concerned due to the considerable dissolved salts, precipitation of gypsum and the increasing feed concentration over time.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.