高效制备具有快速动态特性的 CrFeO3 基湿度传感设备,用于实时呼吸监测和非接触传感

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Neeraj Dhariwal, Preety Yadav, Manju Kumari, Vinod Kumar, O.P. Thakur
{"title":"高效制备具有快速动态特性的 CrFeO3 基湿度传感设备,用于实时呼吸监测和非接触传感","authors":"Neeraj Dhariwal, Preety Yadav, Manju Kumari, Vinod Kumar, O.P. Thakur","doi":"10.1002/ppsc.202400072","DOIUrl":null,"url":null,"abstract":"In this study, a simple and cost‐effective method is presented for developing a metal oxide‐based humidity sensor. CrFeO<jats:sub>3</jats:sub> is synthesized without any precipitating agent and chosen as a model material to study the validity of humidity sensing properties. The surface morphology and structural analysis are provided using field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X‐ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis. Elemental analysis is provided with the help of X‐ray photoelectron spectroscopy (XPS). Obtained results demonstrate the tunable response of order 860 and stability in a large range of humidity. Also, by controlling the porosity and film uniformity, a fast response time of 1.6 s and a recovery time of 2.6 s are achieved with very low hysteresis. Also, cole–cole plot and Fourier transform infrared spectroscopy (FTIR) spectra in the presence and absence of humidity provide detailed analysis of surface interaction with H<jats:sub>2</jats:sub>O molecules. In addition to this, the developed sensor demonstrates excellent response and reproducibility toward real‐time human respiration monitoring along with non‐contact sensing. This work enables the study of developed sensors in real‐time humidity monitoring for practical applications.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Fabrication of CrFeO3‐Based Humidity Sensing Device with Fast Dynamics for Real‐Time Breath Monitoring and Contact‐Less Sensing\",\"authors\":\"Neeraj Dhariwal, Preety Yadav, Manju Kumari, Vinod Kumar, O.P. Thakur\",\"doi\":\"10.1002/ppsc.202400072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a simple and cost‐effective method is presented for developing a metal oxide‐based humidity sensor. CrFeO<jats:sub>3</jats:sub> is synthesized without any precipitating agent and chosen as a model material to study the validity of humidity sensing properties. The surface morphology and structural analysis are provided using field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X‐ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis. Elemental analysis is provided with the help of X‐ray photoelectron spectroscopy (XPS). Obtained results demonstrate the tunable response of order 860 and stability in a large range of humidity. Also, by controlling the porosity and film uniformity, a fast response time of 1.6 s and a recovery time of 2.6 s are achieved with very low hysteresis. Also, cole–cole plot and Fourier transform infrared spectroscopy (FTIR) spectra in the presence and absence of humidity provide detailed analysis of surface interaction with H<jats:sub>2</jats:sub>O molecules. In addition to this, the developed sensor demonstrates excellent response and reproducibility toward real‐time human respiration monitoring along with non‐contact sensing. This work enables the study of developed sensors in real‐time humidity monitoring for practical applications.\",\"PeriodicalId\":19903,\"journal\":{\"name\":\"Particle & Particle Systems Characterization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle & Particle Systems Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/ppsc.202400072\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400072","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种开发基于金属氧化物的湿度传感器的简单而经济的方法。在不使用任何沉淀剂的情况下合成了 CrFeO3,并选择其作为研究湿度传感特性有效性的模型材料。利用场发射扫描电子显微镜 (FESEM)、透射电子显微镜 (TEM)、X 射线衍射 (XRD) 和布鲁瑙尔-艾美特-泰勒 (BET) 分析法进行了表面形貌和结构分析。元素分析借助 X 射线光电子能谱(XPS)进行。获得的结果表明,860 阶的响应是可调的,并且在很大的湿度范围内具有稳定性。此外,通过控制孔隙率和薄膜均匀性,实现了 1.6 秒的快速响应时间和 2.6 秒的恢复时间,且滞后极低。此外,在有湿度和无湿度的情况下,科尔-科尔图和傅立叶变换红外光谱(FTIR)能详细分析表面与 H2O 分子的相互作用。此外,所开发的传感器在非接触式传感的同时,还在实时人体呼吸监测方面表现出卓越的响应性和可重复性。这项工作有助于研究开发的传感器在实时湿度监测方面的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Fabrication of CrFeO3‐Based Humidity Sensing Device with Fast Dynamics for Real‐Time Breath Monitoring and Contact‐Less Sensing
In this study, a simple and cost‐effective method is presented for developing a metal oxide‐based humidity sensor. CrFeO3 is synthesized without any precipitating agent and chosen as a model material to study the validity of humidity sensing properties. The surface morphology and structural analysis are provided using field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X‐ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis. Elemental analysis is provided with the help of X‐ray photoelectron spectroscopy (XPS). Obtained results demonstrate the tunable response of order 860 and stability in a large range of humidity. Also, by controlling the porosity and film uniformity, a fast response time of 1.6 s and a recovery time of 2.6 s are achieved with very low hysteresis. Also, cole–cole plot and Fourier transform infrared spectroscopy (FTIR) spectra in the presence and absence of humidity provide detailed analysis of surface interaction with H2O molecules. In addition to this, the developed sensor demonstrates excellent response and reproducibility toward real‐time human respiration monitoring along with non‐contact sensing. This work enables the study of developed sensors in real‐time humidity monitoring for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Particle & Particle Systems Characterization
Particle & Particle Systems Characterization 工程技术-材料科学:表征与测试
CiteScore
5.50
自引率
0.00%
发文量
114
审稿时长
3.0 months
期刊介绍: Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices. Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems. Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others. Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信