重叠动态群落检测的多目标优化方法

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sondos Bahadori, Mansooreh Mirzaie, Maryam Nooraei Abadeh
{"title":"重叠动态群落检测的多目标优化方法","authors":"Sondos Bahadori, Mansooreh Mirzaie, Maryam Nooraei Abadeh","doi":"10.1007/s00500-024-09895-6","DOIUrl":null,"url":null,"abstract":"<p>Community detection is a valuable tool for studying the function and dynamic structure of most real-world networks. Existing techniques either concentrate on the network's topological structure or node properties without adequately addressing the dynamic aspect. As a result, in this research, we present a unique technique called Multi-Objective Optimization Overlapping Dynamic Community Detection (MOOODCD) that leverages both the topological structure and node attributes of dynamic networks. By incorporating the Dirichlet distribution to control network dynamics, we formulate dynamic community detection as a non-negative matrix factorization problem. The block coordinate ascent method is used to estimate the latent elements of the model. Our experiments on artificial and real networks indicate that MOOODCD detects overlapping communities in dynamic networks with acceptable precision and scalability.</p>","PeriodicalId":22039,"journal":{"name":"Soft Computing","volume":"73 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-objective optimization approach for overlapping dynamic community detection\",\"authors\":\"Sondos Bahadori, Mansooreh Mirzaie, Maryam Nooraei Abadeh\",\"doi\":\"10.1007/s00500-024-09895-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Community detection is a valuable tool for studying the function and dynamic structure of most real-world networks. Existing techniques either concentrate on the network's topological structure or node properties without adequately addressing the dynamic aspect. As a result, in this research, we present a unique technique called Multi-Objective Optimization Overlapping Dynamic Community Detection (MOOODCD) that leverages both the topological structure and node attributes of dynamic networks. By incorporating the Dirichlet distribution to control network dynamics, we formulate dynamic community detection as a non-negative matrix factorization problem. The block coordinate ascent method is used to estimate the latent elements of the model. Our experiments on artificial and real networks indicate that MOOODCD detects overlapping communities in dynamic networks with acceptable precision and scalability.</p>\",\"PeriodicalId\":22039,\"journal\":{\"name\":\"Soft Computing\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00500-024-09895-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00500-024-09895-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

社群检测是研究大多数真实世界网络功能和动态结构的重要工具。现有技术要么专注于网络的拓扑结构,要么专注于节点属性,而没有充分考虑动态方面。因此,在本研究中,我们提出了一种名为 "多目标优化重叠动态社群检测(MOOODCD)"的独特技术,它同时利用了动态网络的拓扑结构和节点属性。通过结合控制网络动态的 Dirichlet 分布,我们将动态社区检测表述为一个非负矩阵因式分解问题。块坐标上升法用于估计模型的潜在元素。我们在人工网络和真实网络上进行的实验表明,MOOODCD 能以可接受的精度和可扩展性检测动态网络中的重叠社区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A multi-objective optimization approach for overlapping dynamic community detection

A multi-objective optimization approach for overlapping dynamic community detection

Community detection is a valuable tool for studying the function and dynamic structure of most real-world networks. Existing techniques either concentrate on the network's topological structure or node properties without adequately addressing the dynamic aspect. As a result, in this research, we present a unique technique called Multi-Objective Optimization Overlapping Dynamic Community Detection (MOOODCD) that leverages both the topological structure and node attributes of dynamic networks. By incorporating the Dirichlet distribution to control network dynamics, we formulate dynamic community detection as a non-negative matrix factorization problem. The block coordinate ascent method is used to estimate the latent elements of the model. Our experiments on artificial and real networks indicate that MOOODCD detects overlapping communities in dynamic networks with acceptable precision and scalability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soft Computing
Soft Computing 工程技术-计算机:跨学科应用
CiteScore
8.10
自引率
9.80%
发文量
927
审稿时长
7.3 months
期刊介绍: Soft Computing is dedicated to system solutions based on soft computing techniques. It provides rapid dissemination of important results in soft computing technologies, a fusion of research in evolutionary algorithms and genetic programming, neural science and neural net systems, fuzzy set theory and fuzzy systems, and chaos theory and chaotic systems. Soft Computing encourages the integration of soft computing techniques and tools into both everyday and advanced applications. By linking the ideas and techniques of soft computing with other disciplines, the journal serves as a unifying platform that fosters comparisons, extensions, and new applications. As a result, the journal is an international forum for all scientists and engineers engaged in research and development in this fast growing field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信