棕榈酰化可增强短极性肽在角质层脂质双分子层中的渗透:分子动力学研究

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Choon-Peng Chng , Lu Zhang , Shikhar Gupta , Changjin Huang
{"title":"棕榈酰化可增强短极性肽在角质层脂质双分子层中的渗透:分子动力学研究","authors":"Choon-Peng Chng ,&nbsp;Lu Zhang ,&nbsp;Shikhar Gupta ,&nbsp;Changjin Huang","doi":"10.1016/j.eml.2024.102213","DOIUrl":null,"url":null,"abstract":"<div><p>Designing chemical molecules that target the skin for non-invasive transdermal drug delivery is of significant interest for both wound healing and skincare applications. These skin-targeting molecules must permeate the outermost protective layer of the skin, the stratum corneum (SC), which consists of dead corneocytes embedded in a lipid matrix, to fulfill their biological functions. Adsorption onto and diffusion through the lipid matrix in the SC represent two key steps for the successful permeation of a skin-targeting molecule across the SC into the underlying skin layers. Here we compare the effects of cyclization and palmitoylation on the adsorption and diffusion of a short polar peptide across a model SC lipid bilayer using molecular dynamics simulations. The cyclized peptide showed slightly better binding to the SC lipid bilayer and similar interaction energies with SC lipids compared to the unmodified peptide. In contrast, the palmitoylated peptide exhibited much stronger interaction with SC lipids via insertion of its attached fatty acid tail into the SC lipid bilayer. The average diffusivity of the cyclized peptide across the SC lipid bilayer was approximately twice that of the unmodified peptide, whereas the palmitoylated peptide’s diffusivity was about 2.7 times higher. Thus, palmitoylation appears to be a promising strategy for enhancing the binding and permeability of short polar peptides across the SC lipid matrix.</p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"71 ","pages":"Article 102213"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Palmitoylation enhances short polar peptide permeation across stratum corneum lipid bilayer: A molecular dynamics study\",\"authors\":\"Choon-Peng Chng ,&nbsp;Lu Zhang ,&nbsp;Shikhar Gupta ,&nbsp;Changjin Huang\",\"doi\":\"10.1016/j.eml.2024.102213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Designing chemical molecules that target the skin for non-invasive transdermal drug delivery is of significant interest for both wound healing and skincare applications. These skin-targeting molecules must permeate the outermost protective layer of the skin, the stratum corneum (SC), which consists of dead corneocytes embedded in a lipid matrix, to fulfill their biological functions. Adsorption onto and diffusion through the lipid matrix in the SC represent two key steps for the successful permeation of a skin-targeting molecule across the SC into the underlying skin layers. Here we compare the effects of cyclization and palmitoylation on the adsorption and diffusion of a short polar peptide across a model SC lipid bilayer using molecular dynamics simulations. The cyclized peptide showed slightly better binding to the SC lipid bilayer and similar interaction energies with SC lipids compared to the unmodified peptide. In contrast, the palmitoylated peptide exhibited much stronger interaction with SC lipids via insertion of its attached fatty acid tail into the SC lipid bilayer. The average diffusivity of the cyclized peptide across the SC lipid bilayer was approximately twice that of the unmodified peptide, whereas the palmitoylated peptide’s diffusivity was about 2.7 times higher. Thus, palmitoylation appears to be a promising strategy for enhancing the binding and permeability of short polar peptides across the SC lipid matrix.</p></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"71 \",\"pages\":\"Article 102213\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431624000932\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624000932","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计能靶向皮肤进行非侵入性透皮给药的化学分子对伤口愈合和护肤应用都具有重大意义。这些皮肤靶向分子必须渗透皮肤最外层的保护层--角质层(SC),才能发挥其生物功能。吸附在角质层脂质基质上并通过其扩散是皮肤靶向分子成功穿过角质层渗透到皮肤底层的两个关键步骤。在这里,我们利用分子动力学模拟比较了环化和棕榈酰化对短极性肽在模型皮层脂质双分子层中吸附和扩散的影响。与未修饰的多肽相比,环化多肽与SC脂质双分子层的结合力稍好,与SC脂质的相互作用能也相似。相比之下,棕榈酰化肽通过其附着的脂肪酸尾插入 SC 脂质双分子层,与 SC 脂质的相互作用要强得多。环化肽在SC脂质双分子层中的平均扩散率约为未修饰肽的两倍,而棕榈酰化肽的扩散率约为未修饰肽的2.7倍。因此,棕榈酰化似乎是增强短极性肽在SC脂质基质中的结合力和渗透性的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Palmitoylation enhances short polar peptide permeation across stratum corneum lipid bilayer: A molecular dynamics study

Designing chemical molecules that target the skin for non-invasive transdermal drug delivery is of significant interest for both wound healing and skincare applications. These skin-targeting molecules must permeate the outermost protective layer of the skin, the stratum corneum (SC), which consists of dead corneocytes embedded in a lipid matrix, to fulfill their biological functions. Adsorption onto and diffusion through the lipid matrix in the SC represent two key steps for the successful permeation of a skin-targeting molecule across the SC into the underlying skin layers. Here we compare the effects of cyclization and palmitoylation on the adsorption and diffusion of a short polar peptide across a model SC lipid bilayer using molecular dynamics simulations. The cyclized peptide showed slightly better binding to the SC lipid bilayer and similar interaction energies with SC lipids compared to the unmodified peptide. In contrast, the palmitoylated peptide exhibited much stronger interaction with SC lipids via insertion of its attached fatty acid tail into the SC lipid bilayer. The average diffusivity of the cyclized peptide across the SC lipid bilayer was approximately twice that of the unmodified peptide, whereas the palmitoylated peptide’s diffusivity was about 2.7 times higher. Thus, palmitoylation appears to be a promising strategy for enhancing the binding and permeability of short polar peptides across the SC lipid matrix.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信