Mayan J. Bedggood , Christi A. Essex , Alice Theadom , Samantha J. Holdsworth , Richard L.M. Faull , Mangor Pedersen
{"title":"轻度脑外伤患者磁共振成像 T2 弛豫测量的个体水平分析:脑部炎症的可能迹象","authors":"Mayan J. Bedggood , Christi A. Essex , Alice Theadom , Samantha J. Holdsworth , Richard L.M. Faull , Mangor Pedersen","doi":"10.1016/j.nicl.2024.103647","DOIUrl":null,"url":null,"abstract":"<div><p>Mild traumatic brain injury (mTBI), often called concussion, is a prevalent condition that can have significant implications for people’s health, functioning and well-being. Current clinical practice relies on self-reported symptoms to guide decision-making regarding return to sport, employment, and education. Unfortunately, reliance on subjective evaluations may fail to accurately reflect the resolution of neuropathology, exposing individuals with mTBI to an increased risk of further head trauma. No objective technique currently exists to assess the microstructural alterations to brain tissue which characterise mTBI. MRI-based T2 relaxation is a quantitative imaging technique that is susceptible to detecting fluid properties in the brain and is hypothesised to indicate neuroinflammation. This study aimed to investigate the potential of individual-level T2 relaxometry to evaluate cellular damage from mTBI. 20 male participants with acute sports-related mTBI (within 14 days post-injury) and 44 healthy controls were recruited for this study. Each mTBI participant’s voxel-wise T2 relaxometry map was analysed against healthy control averages using a voxel-wise z-test with false discovery rate correction. Five participants were re-scanned after clinical recovery and results were compared to their acute T2 relaxometry maps to assess reduction in potential neuroinflammation. T2 relaxation times were significantly increased in 19/20 (95 %) mTBI participants compared to healthy controls, in regions including the hippocampus, frontal cortex, parietal cortex, insula, cingulate cortex and cerebellum. Results suggest the presence of increased cerebral fluid in individuals with mTBI. Longitudinal results indicated a reduction in T2 relaxation for all five participants, indicating a possible resolution over time. This research highlights the potential of individual-level T2 relaxometry MRI as a non-invasive method for assessing subtle brain pathology in mTBI. Identifying and monitoring changes in the fluid content in the brain could aid in predicting recovery and developing individualised treatment plans for individuals with mTBI. Future research should validate this measure with other markers of inflammation (e.g. from blood biomarkers) to test whether T2-relaxometry is related to subtle brain inflammation in mTBI. In addition, future research should utilise larger control groups to establish normative ranges and compute robust z-score analyses.</p></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"43 ","pages":"Article 103647"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221315822400086X/pdfft?md5=5bdb5241589bf00c8168d012e1dcc76d&pid=1-s2.0-S221315822400086X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Individual-level analysis of MRI T2 relaxometry in mild traumatic brain injury: Possible indications of brain inflammation\",\"authors\":\"Mayan J. Bedggood , Christi A. Essex , Alice Theadom , Samantha J. Holdsworth , Richard L.M. Faull , Mangor Pedersen\",\"doi\":\"10.1016/j.nicl.2024.103647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mild traumatic brain injury (mTBI), often called concussion, is a prevalent condition that can have significant implications for people’s health, functioning and well-being. Current clinical practice relies on self-reported symptoms to guide decision-making regarding return to sport, employment, and education. Unfortunately, reliance on subjective evaluations may fail to accurately reflect the resolution of neuropathology, exposing individuals with mTBI to an increased risk of further head trauma. No objective technique currently exists to assess the microstructural alterations to brain tissue which characterise mTBI. MRI-based T2 relaxation is a quantitative imaging technique that is susceptible to detecting fluid properties in the brain and is hypothesised to indicate neuroinflammation. This study aimed to investigate the potential of individual-level T2 relaxometry to evaluate cellular damage from mTBI. 20 male participants with acute sports-related mTBI (within 14 days post-injury) and 44 healthy controls were recruited for this study. Each mTBI participant’s voxel-wise T2 relaxometry map was analysed against healthy control averages using a voxel-wise z-test with false discovery rate correction. Five participants were re-scanned after clinical recovery and results were compared to their acute T2 relaxometry maps to assess reduction in potential neuroinflammation. T2 relaxation times were significantly increased in 19/20 (95 %) mTBI participants compared to healthy controls, in regions including the hippocampus, frontal cortex, parietal cortex, insula, cingulate cortex and cerebellum. Results suggest the presence of increased cerebral fluid in individuals with mTBI. Longitudinal results indicated a reduction in T2 relaxation for all five participants, indicating a possible resolution over time. This research highlights the potential of individual-level T2 relaxometry MRI as a non-invasive method for assessing subtle brain pathology in mTBI. Identifying and monitoring changes in the fluid content in the brain could aid in predicting recovery and developing individualised treatment plans for individuals with mTBI. Future research should validate this measure with other markers of inflammation (e.g. from blood biomarkers) to test whether T2-relaxometry is related to subtle brain inflammation in mTBI. In addition, future research should utilise larger control groups to establish normative ranges and compute robust z-score analyses.</p></div>\",\"PeriodicalId\":54359,\"journal\":{\"name\":\"Neuroimage-Clinical\",\"volume\":\"43 \",\"pages\":\"Article 103647\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221315822400086X/pdfft?md5=5bdb5241589bf00c8168d012e1dcc76d&pid=1-s2.0-S221315822400086X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage-Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221315822400086X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221315822400086X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Individual-level analysis of MRI T2 relaxometry in mild traumatic brain injury: Possible indications of brain inflammation
Mild traumatic brain injury (mTBI), often called concussion, is a prevalent condition that can have significant implications for people’s health, functioning and well-being. Current clinical practice relies on self-reported symptoms to guide decision-making regarding return to sport, employment, and education. Unfortunately, reliance on subjective evaluations may fail to accurately reflect the resolution of neuropathology, exposing individuals with mTBI to an increased risk of further head trauma. No objective technique currently exists to assess the microstructural alterations to brain tissue which characterise mTBI. MRI-based T2 relaxation is a quantitative imaging technique that is susceptible to detecting fluid properties in the brain and is hypothesised to indicate neuroinflammation. This study aimed to investigate the potential of individual-level T2 relaxometry to evaluate cellular damage from mTBI. 20 male participants with acute sports-related mTBI (within 14 days post-injury) and 44 healthy controls were recruited for this study. Each mTBI participant’s voxel-wise T2 relaxometry map was analysed against healthy control averages using a voxel-wise z-test with false discovery rate correction. Five participants were re-scanned after clinical recovery and results were compared to their acute T2 relaxometry maps to assess reduction in potential neuroinflammation. T2 relaxation times were significantly increased in 19/20 (95 %) mTBI participants compared to healthy controls, in regions including the hippocampus, frontal cortex, parietal cortex, insula, cingulate cortex and cerebellum. Results suggest the presence of increased cerebral fluid in individuals with mTBI. Longitudinal results indicated a reduction in T2 relaxation for all five participants, indicating a possible resolution over time. This research highlights the potential of individual-level T2 relaxometry MRI as a non-invasive method for assessing subtle brain pathology in mTBI. Identifying and monitoring changes in the fluid content in the brain could aid in predicting recovery and developing individualised treatment plans for individuals with mTBI. Future research should validate this measure with other markers of inflammation (e.g. from blood biomarkers) to test whether T2-relaxometry is related to subtle brain inflammation in mTBI. In addition, future research should utilise larger control groups to establish normative ranges and compute robust z-score analyses.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.