{"title":"使用有机磷萃取剂作为疏水性深共晶溶剂(HDES)的成分处理磷酸铁锂电池废液","authors":"","doi":"10.1016/j.hydromet.2024.106369","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrometallurgical processes for managing industrial waste have attracted significant attention due to tightening global standards on toxic emissions. Among these processes, the use of non-volatile hydrophobic deep eutectic solvents (HDESs) has emerged as a promising approach to optimising extraction processes. In this study, HDESs incorporating tributyl phosphate (TBP) and di(2-ethylhexyl)phosphoric acid (D2EHPA) were investigated in the context of the extraction and separation of elements found in lithium‑iron phosphate batteries, including lithium, aluminium, iron and copper. The physical properties of the HDESs, such as density, viscosity and refractive index, were characterized and the interactions between their components were analysed using infrared spectroscopy. Considering the different classes of extractants represented by D2EHPA and TBP, extraction efficiency for target metals was evaluated across a range of hydrochloric acid concentrations (1–10 mol/L). Optimal conditions for re-extraction (stripping) were identified for extractant regeneration and the production of individual metal ion solutions. Results demonstrated that Fe<sup>3+</sup> ions could be extracted with an efficiency exceeding 99% across the majority of acidity levels, while Al<sup>3+</sup> ions exhibited similar efficiency from a pH of 1.4. In contrast, Cu<sup>2+</sup> ions showed limited extraction (<5%) at lower pH values but the level of extraction increased to 50% at pH 1.9 and above. Leveraging these findings, a sequential extraction scheme is proposed for Al<sup>3+</sup>, Cu<sup>2+</sup>, Fe<sup>3+</sup> and Li<sup>+</sup> from their mixture, based on a gradual reduction in solution acidity.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of organophosphorus extractants as a component of hydrophobic deep eutectic solvents (HDES) for the processing of spent lithium‑iron phosphate batteries\",\"authors\":\"\",\"doi\":\"10.1016/j.hydromet.2024.106369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrometallurgical processes for managing industrial waste have attracted significant attention due to tightening global standards on toxic emissions. Among these processes, the use of non-volatile hydrophobic deep eutectic solvents (HDESs) has emerged as a promising approach to optimising extraction processes. In this study, HDESs incorporating tributyl phosphate (TBP) and di(2-ethylhexyl)phosphoric acid (D2EHPA) were investigated in the context of the extraction and separation of elements found in lithium‑iron phosphate batteries, including lithium, aluminium, iron and copper. The physical properties of the HDESs, such as density, viscosity and refractive index, were characterized and the interactions between their components were analysed using infrared spectroscopy. Considering the different classes of extractants represented by D2EHPA and TBP, extraction efficiency for target metals was evaluated across a range of hydrochloric acid concentrations (1–10 mol/L). Optimal conditions for re-extraction (stripping) were identified for extractant regeneration and the production of individual metal ion solutions. Results demonstrated that Fe<sup>3+</sup> ions could be extracted with an efficiency exceeding 99% across the majority of acidity levels, while Al<sup>3+</sup> ions exhibited similar efficiency from a pH of 1.4. In contrast, Cu<sup>2+</sup> ions showed limited extraction (<5%) at lower pH values but the level of extraction increased to 50% at pH 1.9 and above. Leveraging these findings, a sequential extraction scheme is proposed for Al<sup>3+</sup>, Cu<sup>2+</sup>, Fe<sup>3+</sup> and Li<sup>+</sup> from their mixture, based on a gradual reduction in solution acidity.</p></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X24001099\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X24001099","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
The use of organophosphorus extractants as a component of hydrophobic deep eutectic solvents (HDES) for the processing of spent lithium‑iron phosphate batteries
Hydrometallurgical processes for managing industrial waste have attracted significant attention due to tightening global standards on toxic emissions. Among these processes, the use of non-volatile hydrophobic deep eutectic solvents (HDESs) has emerged as a promising approach to optimising extraction processes. In this study, HDESs incorporating tributyl phosphate (TBP) and di(2-ethylhexyl)phosphoric acid (D2EHPA) were investigated in the context of the extraction and separation of elements found in lithium‑iron phosphate batteries, including lithium, aluminium, iron and copper. The physical properties of the HDESs, such as density, viscosity and refractive index, were characterized and the interactions between their components were analysed using infrared spectroscopy. Considering the different classes of extractants represented by D2EHPA and TBP, extraction efficiency for target metals was evaluated across a range of hydrochloric acid concentrations (1–10 mol/L). Optimal conditions for re-extraction (stripping) were identified for extractant regeneration and the production of individual metal ion solutions. Results demonstrated that Fe3+ ions could be extracted with an efficiency exceeding 99% across the majority of acidity levels, while Al3+ ions exhibited similar efficiency from a pH of 1.4. In contrast, Cu2+ ions showed limited extraction (<5%) at lower pH values but the level of extraction increased to 50% at pH 1.9 and above. Leveraging these findings, a sequential extraction scheme is proposed for Al3+, Cu2+, Fe3+ and Li+ from their mixture, based on a gradual reduction in solution acidity.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.