{"title":"一类立方超曲面上的有理点","authors":"Yujiao Jiang, Tingting Wen, Wenjia Zhao","doi":"10.1515/forum-2023-0394","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>r</m:mi> <m:mo>⩾</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0394_ineq_0001.png\"/> <jats:tex-math>r\\geqslant 3</jats:tex-math> </jats:alternatives> </jats:inline-formula> be an integer and 𝑄 any positive definite quadratic form in 𝑟 variables. We establish asymptotic formulae with power-saving error terms for the number of rational points of bounded height on singular hypersurfaces <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>S</m:mi> <m:mi>Q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0394_ineq_0002.png\"/> <jats:tex-math>S_{Q}</jats:tex-math> </jats:alternatives> </jats:inline-formula> defined by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>x</m:mi> <m:mn>3</m:mn> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:mi>Q</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>y</m:mi> <m:mi>r</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mi>z</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0394_ineq_0003.png\"/> <jats:tex-math>x^{3}=Q(y_{1},\\dots,y_{r})z</jats:tex-math> </jats:alternatives> </jats:inline-formula>. This confirms Manin’s conjecture for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>S</m:mi> <m:mi>Q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0394_ineq_0002.png\"/> <jats:tex-math>S_{Q}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our proof is based on analytic methods, and uses some estimates for character sums and moments of 𝐿-functions. In particular, one of the ingredients is Siegel’s mass formula in the argument for the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>r</m:mi> <m:mo>=</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0394_ineq_0005.png\"/> <jats:tex-math>r=3</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational points on a class of cubic hypersurfaces\",\"authors\":\"Yujiao Jiang, Tingting Wen, Wenjia Zhao\",\"doi\":\"10.1515/forum-2023-0394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>r</m:mi> <m:mo>⩾</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0394_ineq_0001.png\\\"/> <jats:tex-math>r\\\\geqslant 3</jats:tex-math> </jats:alternatives> </jats:inline-formula> be an integer and 𝑄 any positive definite quadratic form in 𝑟 variables. We establish asymptotic formulae with power-saving error terms for the number of rational points of bounded height on singular hypersurfaces <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>S</m:mi> <m:mi>Q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0394_ineq_0002.png\\\"/> <jats:tex-math>S_{Q}</jats:tex-math> </jats:alternatives> </jats:inline-formula> defined by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi>x</m:mi> <m:mn>3</m:mn> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:mi>Q</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>y</m:mi> <m:mi>r</m:mi> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mi>z</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0394_ineq_0003.png\\\"/> <jats:tex-math>x^{3}=Q(y_{1},\\\\dots,y_{r})z</jats:tex-math> </jats:alternatives> </jats:inline-formula>. This confirms Manin’s conjecture for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>S</m:mi> <m:mi>Q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0394_ineq_0002.png\\\"/> <jats:tex-math>S_{Q}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our proof is based on analytic methods, and uses some estimates for character sums and moments of 𝐿-functions. In particular, one of the ingredients is Siegel’s mass formula in the argument for the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>r</m:mi> <m:mo>=</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0394_ineq_0005.png\\\"/> <jats:tex-math>r=3</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0394\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0394","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 r ⩾ 3 r\geqslant 3 为整数,𝑄 为 𝑟 变量中的任意正定二次型。我们用省力误差项建立了奇异超曲面 S Q S_{Q} 上有界高的有理点数的渐近公式,定义为 x 3 = Q ( y 1 , ... , y r ) z x^{3}=Q(y_{1},\dots,y_{r})z 。这证实了马宁对任意 S Q S_{Q} 的猜想。我们的证明基于分析方法,并使用了𝐿 函数的特征和与矩的一些估计值。特别是,其中一个要素是西格尔的质量公式,它是针对 r = 3 r=3 情况的论证。
Let r⩾3r\geqslant 3 be an integer and 𝑄 any positive definite quadratic form in 𝑟 variables. We establish asymptotic formulae with power-saving error terms for the number of rational points of bounded height on singular hypersurfaces SQS_{Q} defined by x3=Q(y1,…,yr)zx^{3}=Q(y_{1},\dots,y_{r})z. This confirms Manin’s conjecture for any SQS_{Q}. Our proof is based on analytic methods, and uses some estimates for character sums and moments of 𝐿-functions. In particular, one of the ingredients is Siegel’s mass formula in the argument for the case r=3r=3.
期刊介绍:
Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.