L. G. Torres-Mejía, C. A. Parra-Vargas, J. Lentz, S. Weber, L. Mujica-Roncery
{"title":"变形对 CrMnFeCoNi 和 CrMnFeCoNi-CN 高熵合金磁性能的影响","authors":"L. G. Torres-Mejía, C. A. Parra-Vargas, J. Lentz, S. Weber, L. Mujica-Roncery","doi":"10.1007/s11661-024-07514-5","DOIUrl":null,"url":null,"abstract":"<p>The magnetic behavior of two high-entropy alloys, CrMnFeCoNi and CrMnFeCoNi-CN, was investigated under varying degrees of deformation through uniaxial tensile tests. Microstructural, morphological, and crystalline structural analyses using XRD and SEM revealed a uniform and stable austenitic structure in all samples, with no presence of α’-martensite or ε-martensite phases. The main deformation mechanisms identified were twinning and slip dislocation for the CrMnFeCoNi-CN alloy, and slip dislocation for the CrMnFeCoNi alloy at room temperature. The alloys exhibited low magnetic moments attributed to magnetically frustrated configurations. At temperatures below 70 K, distinct magnetic states were observed ranging from paramagnetic to ferrimagnetic and spin-glass-like behavior. Antiferromagnetic interactions were confirmed by a negative paramagnetic Curie temperature for both alloys. The magnetization of the CrMnFeCoNi alloy increased with deformation, reflected in effective magnetic moments varying from 1.81 (0 pct) to 2.60 (20 pct) μB, while for the CrMnFeCoNi-CN alloy remained stable around 2.39 to 2.48 μB. The magnetization of the CrMnFeCoNi-CN alloy was found to be higher than that of the CrMnFeCoNi alloy, suggesting that the presence of C and N as alloying elements can enhance magnetization to some extent.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Deformation on the Magnetic Properties of CrMnFeCoNi and CrMnFeCoNi-CN High-Entropy Alloys\",\"authors\":\"L. G. Torres-Mejía, C. A. Parra-Vargas, J. Lentz, S. Weber, L. Mujica-Roncery\",\"doi\":\"10.1007/s11661-024-07514-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The magnetic behavior of two high-entropy alloys, CrMnFeCoNi and CrMnFeCoNi-CN, was investigated under varying degrees of deformation through uniaxial tensile tests. Microstructural, morphological, and crystalline structural analyses using XRD and SEM revealed a uniform and stable austenitic structure in all samples, with no presence of α’-martensite or ε-martensite phases. The main deformation mechanisms identified were twinning and slip dislocation for the CrMnFeCoNi-CN alloy, and slip dislocation for the CrMnFeCoNi alloy at room temperature. The alloys exhibited low magnetic moments attributed to magnetically frustrated configurations. At temperatures below 70 K, distinct magnetic states were observed ranging from paramagnetic to ferrimagnetic and spin-glass-like behavior. Antiferromagnetic interactions were confirmed by a negative paramagnetic Curie temperature for both alloys. The magnetization of the CrMnFeCoNi alloy increased with deformation, reflected in effective magnetic moments varying from 1.81 (0 pct) to 2.60 (20 pct) μB, while for the CrMnFeCoNi-CN alloy remained stable around 2.39 to 2.48 μB. The magnetization of the CrMnFeCoNi-CN alloy was found to be higher than that of the CrMnFeCoNi alloy, suggesting that the presence of C and N as alloying elements can enhance magnetization to some extent.</p>\",\"PeriodicalId\":18504,\"journal\":{\"name\":\"Metallurgical and Materials Transactions A\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11661-024-07514-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07514-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
通过单轴拉伸试验研究了 CrMnFeCoNi 和 CrMnFeCoNi-CN 这两种高熵合金在不同变形程度下的磁性行为。利用 XRD 和 SEM 进行的微观结构、形态和晶体结构分析表明,所有样品都具有均匀稳定的奥氏体结构,不存在 α'- 马氏体或 ε - 马氏体相。在室温下,CrMnFeCoNi-CN 合金的主要变形机制是孪晶和滑移位错,CrMnFeCoNi 合金的主要变形机制是滑移位错。合金表现出低磁矩,这归因于磁沮构型。在低于 70 K 的温度下,观察到从顺磁到铁磁和类似自旋玻璃的不同磁态。两种合金的负顺磁性居里温度证实了反铁磁相互作用。CrMnFeCoNi 合金的磁化率随变形而增加,反映在有效磁矩从 1.81(0 pct)到 2.60(20 pct)μB 不等;而 CrMnFeCoNi-CN 合金的磁化率则稳定在 2.39 到 2.48 μB 左右。CrMnFeCoNi-CN 合金的磁化率高于 CrMnFeCoNi 合金,这表明作为合金元素的 C 和 N 的存在能在一定程度上提高磁化率。
Effect of Deformation on the Magnetic Properties of CrMnFeCoNi and CrMnFeCoNi-CN High-Entropy Alloys
The magnetic behavior of two high-entropy alloys, CrMnFeCoNi and CrMnFeCoNi-CN, was investigated under varying degrees of deformation through uniaxial tensile tests. Microstructural, morphological, and crystalline structural analyses using XRD and SEM revealed a uniform and stable austenitic structure in all samples, with no presence of α’-martensite or ε-martensite phases. The main deformation mechanisms identified were twinning and slip dislocation for the CrMnFeCoNi-CN alloy, and slip dislocation for the CrMnFeCoNi alloy at room temperature. The alloys exhibited low magnetic moments attributed to magnetically frustrated configurations. At temperatures below 70 K, distinct magnetic states were observed ranging from paramagnetic to ferrimagnetic and spin-glass-like behavior. Antiferromagnetic interactions were confirmed by a negative paramagnetic Curie temperature for both alloys. The magnetization of the CrMnFeCoNi alloy increased with deformation, reflected in effective magnetic moments varying from 1.81 (0 pct) to 2.60 (20 pct) μB, while for the CrMnFeCoNi-CN alloy remained stable around 2.39 to 2.48 μB. The magnetization of the CrMnFeCoNi-CN alloy was found to be higher than that of the CrMnFeCoNi alloy, suggesting that the presence of C and N as alloying elements can enhance magnetization to some extent.