用于实时车辆轨迹估算和预测的汽车跟踪信息神经网络

IF 3.6 2区 工程技术 Q2 TRANSPORTATION
Yu-Hang Yin, Xing Lü, Shu-Kai Li, Li-Xing Yang, Ziyou Gao
{"title":"用于实时车辆轨迹估算和预测的汽车跟踪信息神经网络","authors":"Yu-Hang Yin, Xing Lü, Shu-Kai Li, Li-Xing Yang, Ziyou Gao","doi":"10.1080/23249935.2024.2374523","DOIUrl":null,"url":null,"abstract":"Vehicle trajectory information is a crucial part of improving the efficiency and the safety of the ITS. Data missing or irregular sampling in the real-world road traffic makes it hard to obtain acc...","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Car-following informed neural networks for real-time vehicle trajectory imputation and prediction\",\"authors\":\"Yu-Hang Yin, Xing Lü, Shu-Kai Li, Li-Xing Yang, Ziyou Gao\",\"doi\":\"10.1080/23249935.2024.2374523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle trajectory information is a crucial part of improving the efficiency and the safety of the ITS. Data missing or irregular sampling in the real-world road traffic makes it hard to obtain acc...\",\"PeriodicalId\":48871,\"journal\":{\"name\":\"Transportmetrica A-Transport Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportmetrica A-Transport Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23249935.2024.2374523\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23249935.2024.2374523","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

车辆轨迹信息是提高智能交通系统效率和安全性的关键部分。现实世界道路交通中的数据缺失或不规则采样导致很难获得准确的车辆轨迹信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Car-following informed neural networks for real-time vehicle trajectory imputation and prediction
Vehicle trajectory information is a crucial part of improving the efficiency and the safety of the ITS. Data missing or irregular sampling in the real-world road traffic makes it hard to obtain acc...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportmetrica A-Transport Science
Transportmetrica A-Transport Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
8.10
自引率
12.10%
发文量
55
期刊介绍: Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信