在线超图匹配的近似紧约束

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Thorben Tröbst , Rajan Udwani
{"title":"在线超图匹配的近似紧约束","authors":"Thorben Tröbst ,&nbsp;Rajan Udwani","doi":"10.1016/j.orl.2024.107143","DOIUrl":null,"url":null,"abstract":"<div><p>In the online hypergraph matching problem, hyperedges of size <em>k</em> over a common ground set arrive online in adversarial order. The goal is to obtain a maximum matching (disjoint set of hyperedges). A naïve greedy algorithm for this problem achieves a competitive ratio of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></math></span>. We show that no (randomized) online algorithm has competitive ratio better than <span><math><mfrac><mrow><mn>2</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi></mrow></mfrac></math></span>. If edges are allowed to be assigned fractionally, we give a deterministic online algorithm with competitive ratio <span><math><mfrac><mrow><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>ln</mi><mo>⁡</mo><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> and show that no online algorithm can have competitive ratio strictly better than <span><math><mfrac><mrow><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>ln</mi><mo>⁡</mo><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span>. Lastly, we give a <span><math><mfrac><mrow><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>ln</mi><mo>⁡</mo><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> competitive algorithm for the fractional <em>edge-weighted</em> version of the problem under a free disposal assumption.</p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"55 ","pages":"Article 107143"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost tight bounds for online hypergraph matching\",\"authors\":\"Thorben Tröbst ,&nbsp;Rajan Udwani\",\"doi\":\"10.1016/j.orl.2024.107143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the online hypergraph matching problem, hyperedges of size <em>k</em> over a common ground set arrive online in adversarial order. The goal is to obtain a maximum matching (disjoint set of hyperedges). A naïve greedy algorithm for this problem achieves a competitive ratio of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></math></span>. We show that no (randomized) online algorithm has competitive ratio better than <span><math><mfrac><mrow><mn>2</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi></mrow></mfrac></math></span>. If edges are allowed to be assigned fractionally, we give a deterministic online algorithm with competitive ratio <span><math><mfrac><mrow><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>ln</mi><mo>⁡</mo><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> and show that no online algorithm can have competitive ratio strictly better than <span><math><mfrac><mrow><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>ln</mi><mo>⁡</mo><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span>. Lastly, we give a <span><math><mfrac><mrow><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>ln</mi><mo>⁡</mo><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> competitive algorithm for the fractional <em>edge-weighted</em> version of the problem under a free disposal assumption.</p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":\"55 \",\"pages\":\"Article 107143\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637724000798\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637724000798","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在联机超图匹配问题中,大小超过共同地集的超门以对抗顺序联机到达。目标是获得最大匹配(超图的不相交集合)。针对这个问题的一种天真贪婪算法的竞争比为......我们证明,没有一种(随机)在线算法的竞争比优于......如果允许以分数方式分配边,我们给出了一种具有竞争比的确定性在线算法,并证明没有一种在线算法的竞争比严格优于......最后,我们给出了在自由处置假设下该问题分数版本的竞争算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost tight bounds for online hypergraph matching

In the online hypergraph matching problem, hyperedges of size k over a common ground set arrive online in adversarial order. The goal is to obtain a maximum matching (disjoint set of hyperedges). A naïve greedy algorithm for this problem achieves a competitive ratio of 1k. We show that no (randomized) online algorithm has competitive ratio better than 2+o(1)k. If edges are allowed to be assigned fractionally, we give a deterministic online algorithm with competitive ratio 1o(1)ln(k) and show that no online algorithm can have competitive ratio strictly better than 1+o(1)ln(k). Lastly, we give a 1o(1)ln(k) competitive algorithm for the fractional edge-weighted version of the problem under a free disposal assumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信