{"title":"具有 3×3$3 次 Lax 对的耦合 Hirota 方程:过渡带中的潘列韦型渐近线","authors":"Xiaodan Zhao, Lei Wang","doi":"10.1111/sapm.12745","DOIUrl":null,"url":null,"abstract":"<p>We consider the Painlevé asymptotics for a solution of the integrable coupled Hirota equations with a <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>×</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$3\\times 3$</annotation>\n </semantics></math> Lax pair whose initial data decay rapidly at infinity. Using the Riemann–Hilbert (RH) techniques and Deift–Zhou nonlinear steepest descent arguments, in a transition zone defined by <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>x</mi>\n <mo>/</mo>\n <mi>t</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mrow>\n <mo>(</mo>\n <mn>12</mn>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n </mrow>\n <msup>\n <mi>t</mi>\n <mrow>\n <mn>2</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n <mo>≤</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$|x/t-1/(12\\alpha)|t^{2/3}\\le C$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$C&gt;0$</annotation>\n </semantics></math> is a constant, it turns out that the leading-order term to the solution can be expressed in terms of the solution of a coupled Painlevé II equations, which are associated with a <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>×</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$3\\times 3$</annotation>\n </semantics></math> matrix RH problem and appear in a variety of random matrix models.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The coupled Hirota equations with a \\n \\n \\n 3\\n ×\\n 3\\n \\n $3\\\\times 3$\\n Lax pair: Painlevé-type asymptotics in transition zone\",\"authors\":\"Xiaodan Zhao, Lei Wang\",\"doi\":\"10.1111/sapm.12745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the Painlevé asymptotics for a solution of the integrable coupled Hirota equations with a <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mo>×</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$3\\\\times 3$</annotation>\\n </semantics></math> Lax pair whose initial data decay rapidly at infinity. Using the Riemann–Hilbert (RH) techniques and Deift–Zhou nonlinear steepest descent arguments, in a transition zone defined by <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>|</mo>\\n <mi>x</mi>\\n <mo>/</mo>\\n <mi>t</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mrow>\\n <mo>(</mo>\\n <mn>12</mn>\\n <mi>α</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>|</mo>\\n </mrow>\\n <msup>\\n <mi>t</mi>\\n <mrow>\\n <mn>2</mn>\\n <mo>/</mo>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n <mo>≤</mo>\\n <mi>C</mi>\\n </mrow>\\n <annotation>$|x/t-1/(12\\\\alpha)|t^{2/3}\\\\le C$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$C&gt;0$</annotation>\\n </semantics></math> is a constant, it turns out that the leading-order term to the solution can be expressed in terms of the solution of a coupled Painlevé II equations, which are associated with a <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mo>×</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$3\\\\times 3$</annotation>\\n </semantics></math> matrix RH problem and appear in a variety of random matrix models.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"153 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12745\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12745","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The coupled Hirota equations with a
3
×
3
$3\times 3$
Lax pair: Painlevé-type asymptotics in transition zone
We consider the Painlevé asymptotics for a solution of the integrable coupled Hirota equations with a Lax pair whose initial data decay rapidly at infinity. Using the Riemann–Hilbert (RH) techniques and Deift–Zhou nonlinear steepest descent arguments, in a transition zone defined by , where is a constant, it turns out that the leading-order term to the solution can be expressed in terms of the solution of a coupled Painlevé II equations, which are associated with a matrix RH problem and appear in a variety of random matrix models.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.