具有 3×3$3 次 Lax 对的耦合 Hirota 方程:过渡带中的潘列韦型渐近线

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaodan Zhao, Lei Wang
{"title":"具有 3×3$3 次 Lax 对的耦合 Hirota 方程:过渡带中的潘列韦型渐近线","authors":"Xiaodan Zhao,&nbsp;Lei Wang","doi":"10.1111/sapm.12745","DOIUrl":null,"url":null,"abstract":"<p>We consider the Painlevé asymptotics for a solution of the integrable coupled Hirota equations with a <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>×</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$3\\times 3$</annotation>\n </semantics></math> Lax pair whose initial data decay rapidly at infinity. Using the Riemann–Hilbert (RH) techniques and Deift–Zhou nonlinear steepest descent arguments, in a transition zone defined by <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>x</mi>\n <mo>/</mo>\n <mi>t</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mrow>\n <mo>(</mo>\n <mn>12</mn>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n </mrow>\n <msup>\n <mi>t</mi>\n <mrow>\n <mn>2</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n <mo>≤</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$|x/t-1/(12\\alpha)|t^{2/3}\\le C$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$C&amp;gt;0$</annotation>\n </semantics></math> is a constant, it turns out that the leading-order term to the solution can be expressed in terms of the solution of a coupled Painlevé II equations, which are associated with a <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>×</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$3\\times 3$</annotation>\n </semantics></math> matrix RH problem and appear in a variety of random matrix models.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The coupled Hirota equations with a \\n \\n \\n 3\\n ×\\n 3\\n \\n $3\\\\times 3$\\n Lax pair: Painlevé-type asymptotics in transition zone\",\"authors\":\"Xiaodan Zhao,&nbsp;Lei Wang\",\"doi\":\"10.1111/sapm.12745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the Painlevé asymptotics for a solution of the integrable coupled Hirota equations with a <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mo>×</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$3\\\\times 3$</annotation>\\n </semantics></math> Lax pair whose initial data decay rapidly at infinity. Using the Riemann–Hilbert (RH) techniques and Deift–Zhou nonlinear steepest descent arguments, in a transition zone defined by <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>|</mo>\\n <mi>x</mi>\\n <mo>/</mo>\\n <mi>t</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mrow>\\n <mo>(</mo>\\n <mn>12</mn>\\n <mi>α</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>|</mo>\\n </mrow>\\n <msup>\\n <mi>t</mi>\\n <mrow>\\n <mn>2</mn>\\n <mo>/</mo>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n <mo>≤</mo>\\n <mi>C</mi>\\n </mrow>\\n <annotation>$|x/t-1/(12\\\\alpha)|t^{2/3}\\\\le C$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$C&amp;gt;0$</annotation>\\n </semantics></math> is a constant, it turns out that the leading-order term to the solution can be expressed in terms of the solution of a coupled Painlevé II equations, which are associated with a <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mo>×</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$3\\\\times 3$</annotation>\\n </semantics></math> matrix RH problem and appear in a variety of random matrix models.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"153 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12745\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12745","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了具有 Lax 对的可积分耦合 Hirota 方程解的 Painlevé 渐近线,其初始数据在无限远处迅速衰减。利用黎曼-希尔伯特(RH)技术和戴夫特-周(Deift-Zhou)非线性最陡下降论证,在由 , 定义的过渡区,其中是一个常数,结果发现解的前导阶项可以用耦合 Painlevé II 方程的解来表示,该方程与矩阵 RH 问题相关,出现在各种随机矩阵模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The coupled Hirota equations with a 3 × 3 $3\times 3$ Lax pair: Painlevé-type asymptotics in transition zone

We consider the Painlevé asymptotics for a solution of the integrable coupled Hirota equations with a 3 × 3 $3\times 3$ Lax pair whose initial data decay rapidly at infinity. Using the Riemann–Hilbert (RH) techniques and Deift–Zhou nonlinear steepest descent arguments, in a transition zone defined by | x / t 1 / ( 12 α ) | t 2 / 3 C $|x/t-1/(12\alpha)|t^{2/3}\le C$ , where C > 0 $C&gt;0$ is a constant, it turns out that the leading-order term to the solution can be expressed in terms of the solution of a coupled Painlevé II equations, which are associated with a 3 × 3 $3\times 3$ matrix RH problem and appear in a variety of random matrix models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信