{"title":"带有交叉扩散和非局部项的激活剂-抑制剂(耗竭)模型中的图灵分岔","authors":"Meijia Fu, Ping Liu, Qingyan Shi","doi":"10.1111/sapm.12749","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the instability of a constant equilibrium solution in a general activator–inhibitor (depletion) model with passive diffusion, cross-diffusion, and nonlocal terms. It is shown that nonlocal terms produce linear stability or instability, and the system may generate spatial patterns under the effect of passive diffusion and cross-diffusion. Moreover, we analyze the existence of bifurcating solutions to the general model using the bifurcation theory. At last, the theoretical results are applied to the spatial water–biomass system combined with cross-diffusion and nonlocal grazing and Holling–Tanner predator–prey model with nonlocal prey competition.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turing bifurcation in activator–inhibitor (depletion) models with cross-diffusion and nonlocal terms\",\"authors\":\"Meijia Fu, Ping Liu, Qingyan Shi\",\"doi\":\"10.1111/sapm.12749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the instability of a constant equilibrium solution in a general activator–inhibitor (depletion) model with passive diffusion, cross-diffusion, and nonlocal terms. It is shown that nonlocal terms produce linear stability or instability, and the system may generate spatial patterns under the effect of passive diffusion and cross-diffusion. Moreover, we analyze the existence of bifurcating solutions to the general model using the bifurcation theory. At last, the theoretical results are applied to the spatial water–biomass system combined with cross-diffusion and nonlocal grazing and Holling–Tanner predator–prey model with nonlocal prey competition.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Turing bifurcation in activator–inhibitor (depletion) models with cross-diffusion and nonlocal terms
In this paper, we consider the instability of a constant equilibrium solution in a general activator–inhibitor (depletion) model with passive diffusion, cross-diffusion, and nonlocal terms. It is shown that nonlocal terms produce linear stability or instability, and the system may generate spatial patterns under the effect of passive diffusion and cross-diffusion. Moreover, we analyze the existence of bifurcating solutions to the general model using the bifurcation theory. At last, the theoretical results are applied to the spatial water–biomass system combined with cross-diffusion and nonlocal grazing and Holling–Tanner predator–prey model with nonlocal prey competition.